Огнезащита строительных конструкций СНИП

Содержание статьи

Строительные нормы огнезащитой обработки металлоконструкций

Опыт эксплуатации промышленных сооружений свидетельствует о том, что их несущая способность заметно снижается при нагреве до очень высоких температур (во время пожара, в частности).

Вот почему огнезащита металлических конструкций, порядок которой регламентируется специальными нормами (СНиП и ГОСТ), является обязательной составляющей мероприятий по профилактике их разрушения.

Четыре класса опасности

Согласно действующим нормативам, определяющим пределы огнестойкости при пожаре, все известные типы металлических конструкций по этому показателю делятся на четыре класса:

  • на не пожароопасные элементы (К0);
  • с низкой степенью пожарной опасности (К1);
  • умеренно опасные (К2);
  • пожароопасные (К3).

Указанное деление регламентируется ГОСТ 30403 и положениями техники пожарной безопасности, соблюдение которых обязательно при эксплуатации промышленных зданий и сооружений.

Отдельным пунктом этих стандартов прописывается перечень средств огнезащиты, специально предусмотренных для металлических конструкций.

Виды огнезащитных средств

Для предохранения поверхностей стальных сооружений от разрушения при сильном перегреве на них наносят особого рода теплоизоляторы, создающие своеобразный экран.

Защитное покрытие заметно повышает теплостойкость металлических конструкций, а также продлевает сроки их эксплуатации (в этом случае они нагреваются заметно медленнее и до окончания пожара не успевают окончательно разрушиться).

Согласно действующих СНИП от 21.01.97 года в строительстве возможны различные приёмы экранной огнезащиты металлоконструкций, каждый из которых применяется в соответствующих условиях.

Во-первых, это закрытие поверхностей специальными средствами огнезащиты, к числу которых следует отнести цементные составы, жидкое стекло, а также термостойкие волокна и подобные им материалы.

И, во-вторых, использование красителей особого состава, которые при сильном нагреве вспучиваются и образуют на поверхности металла пористый теплоизоляционный слой толщиной порядка нескольких сантиметров.

Одним из образцов такой продукции является базальтовое волокно, применяемое в качестве отдельного элемента защиты.

Конструктивная огнезащита металлоконструкций (СНИП 21.01.97 года) заключается в формировании термостойкого слоя, создающего дополнительную преграду на пути распространения огня.

Огнезащитная обработка особо важных узлов металлических конструкций может осуществляться комплексным методом, заключающимся в одновременном использовании нескольких защитных средств.

Примером таких действий может служить использование совместно с термостойким красителем специального огнеупорного гипсокартона, после закрытия которым поверхности приобретают вполне презентабельный вид.

Расчет эффективности защиты

Обустройству качественной огнезащиты металлических конструкций должна предшествовать такая обязательная процедура, как предварительный расчёт её элементов.

Последний является неотъемлемой частью подготовки проекта по защите строительных сооружений, который должен включать в свой состав следующие разделы:

  • изучение конструктивных особенностей защищаемого объекта;
  • подбор соответствующего этим особенностям метода огнезащиты, а также грамотное его обоснование;
  • подробнейшее описание технологических особенностей процесса огнезащиты металлических конструкций, согласно СНиП;
  • подготовка комплекта нормативных документов, чертежей и рабочих схем, составленных на основе предварительного изучения составляющих защищаемых объектов.

Контроль качества подготовленного проекта огнезащиты должен быть организован с учётом уже упоминавшихся ранее нормативных актов (СНиП).

Основное внимание при обсчёте огнезащиты конструкций уделяется такому параметру, как приведённая толщина металла в зоне предполагаемого контакта с огнём.

Она определяется из соотношения площади сечения в этом месте к периметру всей поражаемой поверхности (первый из этих параметров берётся из специального справочника по металлоизделиям).

Второй показатель высчитывается как суммарная длина всех сторон элементов металлической конструкции, расположенных открыто и потенциально доступных для огня. В соответствии с этими данными толщина металла, достаточная для его сохранности, определяется по следующей формуле:

  • F- показатель так называемой «приведённой» толщины,
  • S- площадь поперечного сечения конструкции,
  • P- суммарная длина периметра (в сантиметрах).

По результатам такого расчёта определяется противопожарный показатель огнестойкости как всей конструкции в целом, так и отдельных металлических элементов.

Данный показатель является основанием для выбора подходящего способа формирования огнезащиты металлической конструкции и определения достаточности толщины покрытия.

Проверка качества защиты

Оценка качества огнезащиты металлоконструкций на данном объекте осуществляется работниками сторонних организаций, специализирующихся на проведении этого рода обследований и имеющих соответствующую лицензию.

При проведении исследовательских работ должны выполняться требования действующих СНиП, касающиеся порядка их организации, а также применяться специальное измерительное оборудование и вспомогательный инструмент.

В особых случаях отдельные элементы (фрагменты) объёмных сооружений проверяются в лабораторных условиях, обеспечивающих более высокий уровень обследования.

Согласно требованиям пожарной безопасности проверка состояния огнезащиты на эксплуатируемых промышленных объектах должна проводиться не реже чем один раз в год.

При организации указанных мероприятий качество огнезащиты металлических конструкций или их фрагментов в первую очередь оценивается на соответствие требованиям нормативной документации.

При этом также учитываются рекомендации прилагаемых к исходным материалам сертификатов и инструкций, определяющих порядок формирования огнезащиты, а также толщину наносимого слоя.

Для оценки состояния огнезащиты (при измерении толщины термического слоя, в частности), как правило, используется специальный магнитный инструмент.

При составлении окончательного заключения, подготавливаемого по результатам проведённого обследования, в нём обязательно указываются основные характеристики и данные о местонахождении испытуемого объекта (металлической конструкции).

Группы по огнезащитной эффективности

В соответствии с требованиями действующих нормативов для всех объектов промышленного строительства устанавливается показатель эффективности огнезащиты, определяемый как время нагрева металла до критической температуры.

Согласно этому показателю все известные сооружения делятся на семь групп, каждая из которых определяется по результатам специальных обследований, проводимых по методу НПБ 236-97.

Согласно этой методике для классификационных испытаний металлический конструкций применяется специальная установка, предназначенная для определения показателя огнестойкости по ГОСТ 30247.0.

При реализации методики на поверхности конструкции устанавливаются термопары, обеспечивающие регистрацию распределения температур на различных участках металлической поверхности.

При проведении испытаний фиксируется временной промежуток, за который металл нагревается до критической температуры, характерной для условий пожарной ситуации (примерно 500 градусов).

С данными по этому показателю, определяемому в условиях нагревания металлических заготовок до критических температур, можно ознакомиться в таблице.

В случае применения специальных средств огнезащиты (огнеупорных красителей и им подобных) при их вспучивании образуется предохраняющий слой.

В ряде ситуаций толщина этого слоя бывает достаточной для того, чтобы увеличить показатель огнезащитной эффективности металлических конструкций до 240 минут.

Стоимость огнезащитных работ определяется такими типовыми показателями, как площадь защищаемого объекта и пределы огнестойкости составляющих его элементов.

Основные СНиП, ГОСТ по огнезащите деревянных конструкций

Пожары – основной бич народного хозяйства. Влекут за собой огромные материальные потери, а часто и человеческие жертвы. Чтобы эффективно повысить пожарную безопасность, существуют нормативы и стандарты, установленные по результатам многократных испытаний. Эти нормативы можно найти в НПБ, СНиП и ГОСТ на огнезащиту деревянных конструкций.

Специалисты компании ТехСтройГарант осуществляют комплексную огнезащитную обработку деревянных конструкций в Москве и Московской области

ГОСТ на огнезащиту деревянных конструкций, которыми мы руководствуемся

Основные ГОСТы на огнезащиту древесины:

  • в ГОСТ Р 53292-2009 представлены огнезащитные составы для древесины и древесных материалов. В документе содержатся классификация огнезащитных составов, методы испытаний, контроль качества. Скачать ГОСТ Р 53292-2009;
  • в Межгосударственном Стандарте ГОСТ 16363-98.2002 (СНГ) – классификация огнезащитных средств для древесины и методы определения огнезащитных свойств. Скачать ГОСТ 16363-98.2002 (СНГ);
  • ГОСТ 30247.0-94 – основные требования к огнезащитной обработке строительных конструкций в типовых условиях термического воздействия. Классифицируется огнестойкость строения по трем факторам: утрата несущей способности, утрата целостности, утрата теплозащитных свойств. Скачать ГОСТ 30247.0-94;
  • ГОСТ 30247.1-94 – классификация групп пожарной опасности несущих и ограждающих строительных конструкций, пределы и методы испытаний огнестойкости. Скачать ГОСТ 30247.1-94;
  • ГОСТ 16363 – классификация огнезащитных средств. Два варианта определения огнезащитных свойств: классификационный и метод ускоренных испытаний. Скачать ГОСТ 16363;
  • ГОСТ 30403-96 – деление сооружений на 4 класса пожарной опасности, от строений с нулевой пожарной опасностью до пожароопасных. Скачать ГОСТ 30403-96;
  • ГОСТ Р 12.3.047 – требования пожарной безопасности к технологическим процессам. Здесь оговариваются методы испытаний на огнестойкость, возгораемость, распространения огня для элементов деревянных конструкций в зависимости от их габаритных размеров. Определяются предел огнестойкости (в часах), предел распространения огня (в сантиметрах), время самостоятельного горения и другие характеристики. Скачать ГОСТ Р 12.3.047.
Читайте также:  Крыша определение СНИП

Пропиточная огнезащитная обработка деревянных конструкций по ГОСТ регламентируется также Федеральным Законом – ФЗ 123, статья 52.

Кроме специализированных рекомендаций, направленных на обеспечение пожарной безопасности дерева, существует ряд общих стандартов для всех материалов. В ГОСТах материалы классифицируются по различным признакам:

  • ГОСТ 30244-94 регламентирует горючесть материалов от НГ (негорючие) и Г1 (слабогорючие) до Г4 (сильногорючие). Скачать ГОСТ 30244-94;
  • ГОСТ 30402 – воспламеняемость, от В1 (трудновоспламеняющиеся) до В3 (легковоспламеняющиеся). В этом же стандарте описаны методы проверки огнезащиты деревянных конструкций по ГОСТ на скорость воспламенения – время, поверхностная и предельная плотность теплового потока. К материалам группы НГ этот и нижеследующие критерии не применяются. Скачать ГОСТ 30402;
  • ГОСТ 30444 или Р51032-97 – распространение пламени по поверхности горючих материалов. Здесь же методы проверки этого критерия. 4 классификации по критической плотности теплового потока. Скачать ГОСТ 30444;
  • ГОСТ 12.1.044 (пп. 2.14.2 и 4.18) – дымообразование от Д1 (малая степень) до Д3 (высокая). Здесь же нормативы пожаровзрывоопасности и классификация по токсичности материалов при горении – от Т1 (малоопасные) до Т4 (чрезвычайно опасные). Скачать ГОСТ 12.1.044.

Мы предлагаем не только защитную обработку деревянных, но и металлических конструкций, а также огнезащиту воздуховодов и кабелей.

Звоните: 8 (495) 150-5-987 и консультируйтесь бесплатно!

СНиП на огнезащиту деревянных конструкций

В СНиП обработке огнезащитным составом деревянных конструкций и повышению уровня огнестойкости также уделяется много внимания:

  • в СНиП 2.01.02 строения делятся на 8 степеней огнестойкости исходя из устойчивости к горению и скорости распространения огня. Скачать СНиП 2.01.02;
  • СНиП 21-01-97 посвящен пожарной безопасности зданий. Здесь содержится классификация материалов и конструкций по этому критерию с указанием их пределов огнестойкости. Скачать СНиП 21-01-97;
  • в СП 64.13330.2011 (актуализированная редакция 11-25-80 СНиП), посвященном технологии строительства сооружений из дерева, обязательное приложение К содержит пожарно-технические требования к деревянным конструкциям. Скачать СП 64.13330.2011.

В приложении К описаны:

  • правила расчета пределов огнестойкости для деревянных конструкций и соединительных узлов в соответствии с ГОСТ 30247.0 и 30247.1;
  • разделение деревянных сооружений по классам пожарной опасности (ГОСТ 30403), требования к снижению пожарной опасности;
  • рекомендации по применению огнезащитных составов 1 и 2 групп огнезащитной эффективности по результатам испытаний по ГОСТ Р 53292;
  • перечень рекомендованных видов огнезащитных средств;
  • основные требования к обработке с указанием необходимой периодичности.

Кроме основных стандартов для огнезащиты древесины – СНиП (СП) и ГОСТ – общие требования к средствам обеспечения пожарной безопасности древесных конструкций отражены в НПБ 251 «Огнезащитные составы для древесины». Здесь же указаны методы испытаний огнезащитной эффективности противопожарных средств.

Огнезащита стальных несущих конструкций

Область применения различных способов огнезащиты определяют с учетом требуемого предела огнестойкости металлической конструкции, ее типа и ориентации в пространстве (колонны, стойки, ригели, балки, связи), вида нагрузки, действующей на конструкцию (статическая, динамическая), температурно-влажностного режима эксплуатации и производства работ по огнезащите (сухие, мокрые процессы), степени агрессивности окружающей среды, увеличение нагрузки на конструкцию за счет огнезащиты, эстетических требований и др.

Строительные металлические конструкции, не распространяющие огонь, имеют неорганическую структуру и являются негорючими. В условиях пожара металлические конструкции в основном теряют свою несущую способность через 15 минут (0,25 часа) [Л1], поэтому в тех случаях, когда требуемый предел огнестойкости превышает это значение, металлические колонны, фермы и балки подвергают огнезащите.

Требование по огнезащите конструкций сооружений регламентируется соответствующими СНиП, начиная от СНиП 21-01-97 «Пожарная безопасность зданий и сооружений» и СНиП, конкретизирующих требования к данному типу сооружений, например, Промышленные предприятия – СНиП 2.09.03-89 «Сооружения промышленных предприятий» или СНиП 2.08.01-89* «Жилые здания», СНиП 2.08.02-89 «Общественные здания» и т.д.

Огнезащита должна обеспечить высокую сопротивляемость конструкций действию огня и высоких температур, иметь низкую теплопроводность и достаточную адгезию к металлу. Она должна быть долговечной, иметь низкую стоимость, технология нанесения должна быть доступной.

Характеристика металлических конструкций и требования к их огнестойкости

В соответствии с требованиями СНиП 21-01-97, здания делятся на 5 степеней огнестойкости в зависимости от значений пределов огнестойкости основных строительных конструкций, принимаемых в часах или минутах, и пределов распространения огня по ним, принимаемым в сантиметрах. Нормированию подлежат: стены, перегородки, колонны, элементы лестничных клеток, перекрытий и покрытий. При несоответствии хотя бы одного из элементов здания (сооружения) требуемым значениям степень огнестойкости всего здания уменьшается до степени огнестойкости, где значение фактического предела огнестойкости не менее требуемого.

В зависимости от степени огнестойкости здания или сооружения нормы пожарной безопасности регламентируют их назначение, противопожарные разрывы, этажность, площадь пожарных отсеков, длину путей эвакуации и т.п.

Строительные конструкции характеризуются огнестойкостью и пожарной опасностью.

Предел огнестойкости строительных конструкций устанавливается по времени наступления одного или последовательно нескольких нормируемых для данной конструкции признаков предельных состояний:

•потери несущей способности,
•потери целостности,
•потери теплоизолирующей способности.

Пределы огнестойкости строительных конструкций устанавливаются по ГОСТ 30247.

По пожарной опасности строительные конструкции подразделяются на 4 класса:

КО (непожароопасные)
К1 (малопожароопасные)
К2 (умереннопожароопасные)
К3 (пожароопасные)

Класс пожарной опасности строительных конструкций устанавливают по ГОСТ 30403.

Факторами, определяющими воздействие пожара на стальные конструкции, являются по мнению авторов [Л2]: уровень рабочих напряжений, температура прогрева конструкции и длительность воздействий. Влияние повышенных температур пожара приводит к изменению прочностных и деформационных свойств применяемых сталей, появлению температурных напряжений и деформаций, а длительность процесса обусловливает возможность возникновения значительных деформаций ползучести. Все это может привести к получению стальными конструкциями необратимых деформаций, потери ими несущей или ограждающей способности. В свою очередь, потеря ограждающей способности может явиться причиной распространения пожара в смежных помещениях здания со стальным пространственным каркасом, а потеря несущей способности конструкций может вызвать обрушение самих конструкций.

С ростом температуры теплопроводность сталей падает, а удельная теплоемкость увеличивается.

По данным [Л3], в процессе нагрева несущие стальные конструкции находятся под действием постоянной рабочей нагрузки, а металл этих конструкций нагревается в напряженном состоянии. В этом случае рост деформации и снижение прочности металла зависят от режима его нагрева, так как эти процессы происходят во времени, и, следовательно, связаны с явлением ползучести.

До определенной температуры деформация стали увеличивается примерно с постоянной скоростью в основном за счет температурного расширения. Затем начинает проявляться температурная ползучесть стали, и скорость роста деформации образца плавно возрастает. За пределами ε аt = 3 %, вследствие резкого увеличения ползучести, кривая полных деформаций стали быстро приближается к вертикали. Следовательно, можно принять, что при значении ε аt = 3 % достигается предел прочности нагретой стали.

Незащищенные несущие металлические конструкции, как правило, имеют очень низкий предел огнестойкости, ч.:

стальные – в среднем 0,25

Исключение составляют стальные мембранные покрытия и колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать 0,75 ч. Низкая огнестойкость большинства металлических конструкций объясняется главным образом их тонкостенностью, т.е. малой теплоемкостью.

Так, например, теплоемкость стальной колонны коробчатого сечения 300x300x10 мм, имеющей предел огнестойкости 0,23 ч, при 500°С составляет

63×10 3 Дж/м, а железобетонная колонна сплошного сечения 300×300 мм, у которой предел огнестойкости превышает 2 часа имеет теплоемкость 260×10 3 Дж/м, т.е. в четыре раза больше.

Читайте также:  Толщина швов кирпичной кладки СНИП

Повышение теплоемкости стальных колонн путем применения сплошного сечения размером, например, до 300×300 мм не позволяет увеличить их огнестойкость до величины, которая характерна для колонн из железобетона. Причиной этого является огромная теплопроводность стали, благодаря чего все сечение металлической конструкции быстро прогревается до высоких температур, в то время как центральная часть железобетонных колонн (ядро сечения) до высоких температур прогревается очень медленно.

Способы огнезащиты металлических конструкций

Огнезащита предназначена для повышения фактического предела огнестойкости конструкций до требуемых значений. Эту задачу выполняют путем использования теплозащитных и теплопоглощающих экранов, специальных конструктивных решений, огнезащитных составов, технологических приемов и операций, а также применением материалов пониженной горючести. Огнезащитное действие экранов основывается либо на их высокой сопротивляемости тепловым воздействиям при пожаре, сохранением в течение заданного времени теплофизических характеристик при высоких температурах, либо на их способности претерпевать структурные изменения при тепловых воздействиях с образованием коксоподобных пористых структур, для которых характерна высокая изолирующая способность.

Расположение огнезащитных экранов может осуществляться либо непосредственно на поверхности защищаемых конструктивных элементов, либо на откосе с помощью специальных мембранкоробов, каркасов, закладных деталей.

Огнезащита предусматривает применение конструктивных методов, использование теплозащитных экранов из облегченных составов, наносимых на поверхность конструкций высокопроизводительными индустриальными методами.

Конструктивные методы огнезащиты включают обетонирование, обкладку кирпичом, оштукатуривание, использование крупноразмерных листовых и плитных огнезащитных облицовок, применение огнезащитных конструктивных элементов (например огнезащитных подвесных потолков), заполнение внутренних полостей конструкций, подбор необходимых сечений элементов, обеспечивающих требуемые значения пределов огнестойкости конструкций, разработку конструктивных решений узлов примыкания, сопряжений и соединений конструкций.

Кирпичную и бетонную облицовку применяют [Л4] для повышения предела огнестойкости стальных конструкций до 2 ч и более. При этом бетонную облицовку толщиной 50 мм и более армируют стальным каркасом (хомутом и продольными стержнями) во избежание преждевременного ее обрушения при действии огня. Для исключения этого явления в случае кирпичной облицовки толщиной в 1/4 кирпича (65 мм) в ее швах также устанавливаются стальные анкеры или хомуты.

Цементно-песчаная штукатурка толщины 25-60 мм, наносимая по стальной сетке, используется для повышения предела огнестойкости металлических конструкций до 2 -х и более часов.

При толщине 40-60 мм штукатурку армируют двойной сеткой, что предохраняет ее от преждевременного обрушения при пожаре.

Отмеченные выше облицовки достаточно надежны и долговечны. Однако они существенно увеличивают массу конструкций и является трудоемкими. Стремление снизить массу огнезащитной облицовки привело к разработке легких штукатурок на основе перлита, вермикулита и других эффективных материалов. Эти облицовки имеют малую плотность (200-600 кг/см 3 ) и поэтому низкую теплопроводность. Они могут применяться для повышения огнестойкости конструкций до 4 -х часов.

Для огнезащитной облицовки можно использовать полужесткие минераловатные плиты, укрепляемые с помощью стальных анкеров и каркасов. В этом случае необходимо предусматривать антикоррозионную защиту конструкций и достаточную отделку наружной поверхности минераловатной облицовки декоративными материалами.

Для повышения предела огнестойкости 0,75 ч – 1,5 ч применяют огнезащитные краски, лаки, эмали. Они выполняют следующие функции: являются защитным слоем на поверхности материалов, поглощают тепло, выделяют ингибиторные газы, высвобождают воду. Подразделяются на две группы: невспучивающиеся и вспучивающиеся. Невспучивающиеся краски при нагревании не увеличивают толщину своего слоя. Вспучивающиеся краски при нагревании увеличивают толщину слоя в 10-40 раз. Как правило, вспучивающиеся краски более эффективны, так как при тепловых воздействиях происходит образование вспененного слоя, представляющего собой закоксовавшийся расплав негорючих веществ (минеральный остаток). Образование этого слоя происходит за счет выделяющихся при нагревании газо- и парообразных веществ. Коксовый слой обладает высокими теплоизоляционными качествами.

Наиболее технологичным является устройство тонкослойных покрытий с использованием вспучивающихся составов на органической основе. Их огнезащитные свойства проявляются за счет увеличения толщины слоя и изменения теплофизических характеристик при интенсивном тепловом воздействии в условиях пожара.

При воздействии высоких температур покрытие вспучивается, значительно увеличивается в объеме с образованием коксового пористого слоя. Вспучивающиеся покрытия являются многокомпозиционными системами, состоящими из связующего, антипирена и пленкообразователей. При воздействии высоких температур эти вещества разлагаются, выделяя пары или газы, которые блокируют конвективный перенос тепла к защищаемой поверхности, подавляя пламя вблизи слоя покрытия и уменьшают радиационный поток тепла.

Образующийся пористый слой обугливается покрытие является теплоизоляционным слоем между источником тепла и защищаемой поверхностью. Объем образовавшегося обугленного слоя, в зависимости от состава, может составлять от 5 до 200 первоначальных объемов покрытия.

Коэффициент вспучивания зависит не только от природных свойств материала, но и от условий его нагревания (максимальной температуры и скорости подъема ее). Поэтому для одного и того же материала, обладающего способностью вспучиваться при нагревании, коэффициент вспучивания может колебаться в очень широких пределах. Причиной вспучивания и образования пористости служит выделение водяного пара или газа при высоких температурах. Одни виды сырья при нагреве размягчаются, что способствует возникновению в них пор, другие растрескиваются и распадаются на более мелкие частицы, чем до нагрева, что также приводит к образованию высокопористой структуры.

По мнению [Л.5], механизм работы вспучивающегося покрытия заключается в следующем. При одностороннем нагреве покрытия в его подповерхностном слое формируется переменное по толщине и во времени температурное поле, а также выделяются газообразные продукты термического разложения полимерной или минеральной основы. В результате этого увеличивается пористость материала и в порах создается повышенное давление. В диапазоне температур (наружная поверхность – поверхность защищаемой конструкции) каркас пористого подповерхностного слоя проходит через пластичное (вязко-текучее) состояние и под действием внутреннего давления вытягивается до образования в «узких местах» разрывов – локальных трещин, через которые избыток газов пиролиза выте-кает в окружающую среду, взаимодействуя с ней. Локальные деформации каркаса, суммируясь по возрастающей во времени толщине пластичного слоя, создают эффект вспучивания – перемещение поверхности покрытия «навстречу» внешнему тепловому потоку.

По мере роста температуры каркас затвердевает и фиксируется в пространстве, образуя вспененный слой, в ячейках которого содержится азот и углекислый газ.

Современные огнезащитные составы и их свойства

Огнезащита строительных конструкций

Строительная конструкция – часть здания или другого строительного сооружения, выполняющая определенные несущие, ограждающие и (или) эстетические функции.

Несущие конструкции (элементы) – конструкции, воспринимающие постоянную и временную нагрузку, в том числе нагрузку от других частей зданий.

Ограждающие конструкции – конструкции, выполняющие функции ограждения или разделения объемов (помещений) здания.

В современном строительстве, как и раньше, главным является безопасная работа строительной конструкции. В этой работе весомое место занимает огнезащита.

Огнезащита конструкций и сооружений предназначена для повышения фактического предела огнестойкости конструкций до требуемых значений и для ограничения предела распространения огня по ним, при этом обращается внимание на снижение так называемых побочных эффектов (дымообразования, выделения газообразных токсичных веществ). Эту задачу выполняют путем использования теплозащитных и теплопоглощающих экранов, специальных конструктивных решений, огнезащитных составов, технологических приемов и операций, а также применением материалов пониженной горючести.

В соответствии с нормативом “Пожарная безопасность зданий и сооружений” различные металлические и деревянные строительные конструкции, в т.ч. несущие элементы зданий, междуэтажные перекрытия, должны иметь предел огнестойкости, соответствующий их назначению.

Требования пожарной безопасности к строительным конструкциям

ФЗ от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»

Предел огнестойкости строительных конструкций

огне-
стойкости
зданий, сооружений

Несущие стены, колонны и другие

Наружные ненесущие стены

Перекры-
тия между-
этажные (в том числе

Строительные конструкции бесчердачных покрытий

Строительные конструкции лестничных клеток

и пожарных отсеков *

чердачные и над подва-
лами)

настилы (в том числе с утепли-
телем)

фермы, балки, прогоны

марши и площадки лестниц

________________
* Наименование графы в редакции, введенной в действие с 12 июля 2012 года Федеральным законом от 10 июля 2012 года N 117-ФЗ.

Класс пожарной опасности строительных конструкций

конструктивной пожарной опасности здания

Несущие стержневые элементы (колонны, ригели, фермы)

Наружные стены с внешней стороны

Читайте также:  Уровни ответственности зданий и сооружений ГОСТ

Стены, перегородки, перекрытия и бесчердач-
ные покрытия

Стены лестничных клеток и противопожа-
рные преграды

Марши и площадки лестниц в лестничных клетках

Решения для огнезащиты строительных конструкций

Класс пожарной
опасности
строительных
конструкций

Несущие стены, колонны, ригели, фермы и другие несущие элементы зданий IV, V степени огнестойкости и классов конструктивной пожарной опасности СО, С1, С2;

Наружные ненесущие стены зданий II, III, IV, V степени огнестойкости и классов конструктивной пожарной опасности СО, С1, С2;

Перекрытия междуэтажные (в том числе чердачные и над подвалами) зданий IV, V степени огнестойкости и классов конструктивной пожарной опасности СО, С1, С2;

Строительные конструкции бесчердачных покрытий (настилы, фермы, балки, прогоны) зданий II, III, IV, V степени огнестойкости и классов к онструктивной пожарной опасности СО, С1, С2;

Строительные конструкции лестничных клеток (марши и площадки лестниц) зданий IV, V степени огнестойкости и классов конструктивной пожарной опасности СО, С1, С2;

Стены межквартирные, перегородки межквартирные в жилых многоквартирных зданиях IV степени огнестойкости и классов конструктивной пожарной опасности СО, С1, С2;

Стены и перегородки,отделяющие внеквартирные коридоры от других помещений, в жилых многоквартирных зданиях IV степени огнестойкости и классов конструктивной пожарной опасности СО, С1, С2;

Конструкции галерей в галерейных домах IV степени огнестойкости; Фасадные системы (с применением негорючих материалов облицовки, отделки и теплоизоляции) зданий и сооружений I, II, III степени огнестойкости и классов функциональной пожарной опасности Ф1.1 и Ф4.1, кроме малоэтажных жилых домов;

Лестничные площадки и марши (пределом огнестойкости R15) на незадымляемых лестничных клетках типа Н1;

Лестницы (с пределом огнестойкости REI15) в зданиях по переработке зерна при количестве постоянно работающих в рабочем здании (на этажах выше первого) и соединенных с ним силосных корпусах, а также в корпусах сырья и готовойпродукции, не более 10 чел., при отсутствии рабочих мест для инвалидов

Огнезащита металлических конструкций: виды покрытий, методы нанесения и периодичность обработки

Нормативные документы

Какие металлоконструкции подлежат огнезащите

Предел огнестойкости металлоконструкций без огнезащиты

Предел огнестойкости обозначается латинскими буквами и цифрами (минуты):

  • R – несущая функция;
  • E – целостность;
  • I – теплоизоляционное значение, крайняя точка воспламенения, нагревания расположенных поблизости объектов.

Минимальной стойкостью обладают металлоконструкции без покрытий, максимальной – железобетон. Примеры: R120 – предел сопротивлению огню 120 мин. для критического снижения несущей способности.

Расчет приведенной толщины металла

При определении противопожарной защиты используется понятие «приведенная толщина металла» (ПТМ). От ПТМ зависят требуемые параметры обработки.

Отношение величины поперечного сечения металлоконструкции к периметру площади, подверженной обогреву.

Подбор средства огнезащиты (СО), параметры слоя.

Исчисления учитывают НПБ 236-97 и отображают зависимость толщины покрытия от приведенной толщины металла. Процедура расчета использует несколько формул, учитывает параметры сечения детали – периметр.

Расчет толщины покрытия и ПТМ примерно выглядит так:

    Исходные данные:
      Двутавр 300(h) 300(b) 10(S) 11080(f).

    Таблица приведенной толщины металла

    В файле представлены таблицы с готовыми значениями по наличному на рынке сортаменту строительной металлопродукции. Требуемые по техзаданию данные сопоставляют со значениями и инструкцией производителя на выбранный тип СО.

    Группы огнезащитной эффективности металлоконструкций

    Есть 7 групп огнезащитной эффективности (ОЭ) средств. Категории зависят от времени, при котором достигается критическое состояние обработанного материала. Классификация указана в ГОСТ 53295-2009 (п. 5.5.3), «Пособие по определению пределов огнестойкости…».

    Выдерживает прямой огонь (не менее, мин.)

    7 (не огнезащита)

    Виды и способы огнезащиты конструкций из металла

    • лаки;
    • краски:
      • Терма Люкс
      • Аквест-911 Мастер
      • Джокер 521
      • ОЗК-01
      • Стабитерм-207
      • Стабитерм-209
      • Стабитерм-219
      • ВУП-2
      • ВУП-3Р
      • Неофлэйм 513
      • Феникс СТС
      • ОГРАКС-МСК
      • DEFENDER ME
      • КЕДР-S BM
      • КЕДР-МЕТ-КО
    • грунтовки;
    • тонкие слои штукатурки:
      • ВПМ–2
      • FENDOLITE®-MII
      • FIBROGAINE®
      • Promat®
      • Неоспрей
      • СОШ-1
      • ГеоМикс
      • Формула КП
    • обмазки, мастики:
      • ПЛАЗАС
      • Стабитерм-221
      • Огнетитан RM
      • Огнетитан LMR
      • Огнетитан LМ
      • НЕОФЛЭЙМ 516 Р
      • КЕДР-МЕТ-С01
      • Ecofire-Конструктив

    Несколько способов одновременно. Например:

    1. Непосредственно на поверхность наносят грунтовку, краску.
    2. Металлоконструкцию закрывают огнеупорной плитой.

    Требования к огнезащите

    Для каждого элемента установлен (СНиП 21-01-97):

    1. предел огнестойкости – например: по п. 5.14. стены отнесены к 1 и 2 типу с REI150 / REI45;
    2. класс – пример: для противопожарных преград – К0 или К1 (п.5.14).

    Необходимо учитывать особенности материалов:

    1. конструктивная защита плитами, кирпичной кладкой, бетонированием эффективная, но потребуется:
      • гидроизоляция металла;
      • анкеры и армирование, поскольку материал трескается при температурах и расширяется;

    2. облицовывать балки опасно, поэтому применяют штукатурку, цемент, бетонирование.

    Средства и составы

    Составы, наносимые на поверхность (ГОСТ 53295-2009), создают тонкий слой, не затрагивая форму металлических конструкций. Содержат антипирены. Виды:

    1. краски:
      • вспучивающиеся — при нагревании создают коксовое покрытие, выделяя при этом вещества и газы для самозатухания. Увеличиваются в 10 – 70 раз. Например, 4 мм покрытия образует 4-сантиметровую защиту;
      • невспучивающиеся — основной компонент – силикаты, «жидкое стекло». Наподобие лаков, но с пигментами и с большей толщиной. Поглощают тепло, выделяют ингибиторы, негорючие газы, воду. Менее эффективные вспучивающихся;

    2. лаки;
    3. пасты, обмазки, мастики, штукатурки (тонких слоев). Образуют покрытие до 2 см. Отличаются от краски большей дисперсностью. Содержат вермикулит, глину, вяжущие вещества, химические добавки;
    4. огнеупорные грунтовки.

    Пропитка к металлоконструкциям не применяется из-за невозможности проникать вглубь обрабатываемой поверхности.

    Разновидности составов огнезащиты:

    1. для мест:
      • открытых;
      • закрытых;

    2. для помещений:
      • отапливаемых;
      • неотапливаемых;
      • со спецусловиями;

    3. по специфике применения:
      • наносимые на поверхность;
      • в комбинации с иными СО;

    4. под свойства металла:
      • для оцинковки или простой стали.

    Защитные конструкции

    Рекомендации по применению огнезащитных покрытий для металлических конструкций

    Технологии нанесения составов

    Требования к нанесению средств:

    1. несколько слоев, каждый должен просохнуть;
    2. при нанесении нескольких составов антикоррозионная подготовка, грунтовка обязательные;
    3. поверхность:
      • зачищена;
      • отшлифована;
      • обезжирена;

    4. применяются:
      • каркасы простые или с воздушными прослойками;
      • анкеры, армирование.

    Технологии нанесения:

    1. распыление, напыление;
    2. обматывание;
    3. оклеивание;
    4. обмазка;
    5. нанесение ЛКМ;
    6. облицовка;
    7. оштукатуривание;
    8. укладка плитки, кирпича, бетона.

    Пример работ поэтапно:

    1. Проект на огнезащиту.
    2. Очищение поверхности. Часто применяют пескоструйную обработку, которая одновременно
      создает идеально очищенную поверхность и шероховатость (адгезию) для сцепления с СО.
    3. Грунтовка.
    4. Покрытие составом с периодами для высыхания слоев.
    5. На финишных этапах наносят декоративные слои, лаки.

    Работы производятся только лицензированными МЧС организациями (п. 4.3 ГОСТ 53295-2009) и включают создание проекта с расчетами, технологической картой. Стоимость обработки за м² зависит от объема выполняемых работ, сложности и применяемых СО: для краски примерная цена от 450 до 900 руб.

    Оборудование для нанесения

    Периодичность обработки металлоконструкций

    Правило периодичности установлено в Постановлении №113 от 17.02.2014 г.:

    1. если нет указаний изготовителя – раз в год;
    2. в срок, указанный производителем в ТД или в гарантии;
    3. дата устанавливается пожарным инспектором в предписании, если обнаружены недостатки.

    Срок действия средств огнезащиты для металла больший, чем для дерева – около 10 – 20 лет. Временные рамки для бетонных, кирпичных ограждений, облицовкой плитами могут достигать 50 и более лет.

    Проверка качества противопожарной обработки стальных конструкций

    Наличие огнезащиты и прохождение контроля подтверждают:

    1. акты качества, проверок;
    2. акт скрытых работ;
    3. дополнительные бумаги: протокол замера толщины, испытаний.

    Официальное значение документы имеют только с подписью представителя органов пожнадзора, проверяющих соответствие выполненного НПБ. Бумаги выдаются исполнителем, имеющего лицензию на работы по нанесению и экспертизе.

    Процедура включает:

    1. визуальные методы (осмотр);
    2. инструментальные (с разрушением или без);
      • щуп;
      • магнитомер;
      • забор частиц;

    3. испытания, экспертиза обработки. Привлекают профильные лицензированные лаборатории.

    Периодичность проверки

    1. Первая проверка – после завершения отделки.
    2. Последующий контроль качества – согласно ППР N 390 от 25.03.2012 г. не реже 1 раза в год.

    Пожарный надзор использует для процедуры руководство «Оценка качества огнезащиты …». Организовать процедуры должен владелец объекта (п. 21 ППР).

    Акт проверки огнезащитной обработки конструкций из металла: образец

    Акт проверки состояния обработки создается комиссией из представителей собственника объекта и органов ГПС.

    Содержание свободное, по стандартным нормам делопроизводства:

    1. члены комиссии;
    2. дата проведения;
    3. адрес и параметры объекта;
    4. какие элементы осматривались;
    5. способ (забор и сжигание частичек слоя и пр.);
    6. результаты.

Оцените статью
Добавить комментарий