Гальваническая развязка для видеонаблюдения

Гальваническая развязка для видеонаблюдения

А. Архипов, А. Кисельков, Е. Кочетков, к.т.н.
НПО «Защита информации»

В настоящее время в сегменте рынка приборов передачи видеоизображения по витой паре представлено множество моделей, выпускаемых отечественными и зарубежными производителями. Многообразие оборудования, нередко завышенные технические параметры предлагаемых устройств, часто не понимание того, по каким критериям выбирать аппаратуру для конкретной системы наблюдения затрудняет приобретение необходимых приборов. Разумеется, все производители и продавцы стараются выделить свою продукцию по таким важным характеристикам как максимальная дистанция передачи или рабочий диапазон частот. Но в реальных условиях эксплуатации на первое место часто выходят такие параметры, как герметичность, диапазон рабочих температур, помехозащищенность, наличие дополнительных функциональных возможностей. Причем изучение «прайсов» различных компаний позволяет сделать вывод, что число передатчиков пригодных для уличных условий эксплуатации крайне невелико. Общая структура представленной статьи построена таким образом, чтобы дать потребителю дополнительную информацию о видеопередатчиках, что поможет сделать правильный выбор оборудования для «своей» системы.

Передатчики видеоизображения размещают в непосредственной близости от видеокамер, не редко, в местах незащищенных от воздействия внешних факторов, таких как температура, дождь, снег, туман, брызги, пыль и т.д. Наиболее опасным для любой электронной аппаратуры, в том числе и для передатчиков видеоизображения, является воздействие влаги. Это одна из основных особенностей их эксплуатации.

Расстояние от передатчика видеосигнала до приемного оборудования может составлять не одну сотню метров, а то и не один километр. Это означает, что видеопередатчик должен быть активным, с предварительной корректировкой частотной характеристики тракта передачи. Если для больших расстояний Вам предлагают пассивные устройства, обещая отличное изображение, не верьте этому, Вас вводят в заблуждение.

Монтаж передающего видеооборудования происходит в местах установки видеокамер, а это могут быть самые непредсказуемые, труднодоступные зоны, обычно на открытом пространстве. Монтируют оборудование при любой погоде и в любой сезон. Поэтому будет правильно использовать приборы, предназначенные для монтажа в полевых условиях. Способы монтажа, в конечном итоге, существенно влияют на надежность системы видеонаблюдения.

В местах установки видеокамер на реальном охраняемом объекте, как правило, отсутствует низковольтное напряжение для их питания. Это очень существенная особенность использования таких видеокамер в системах охранного телевидения, требующая определенных технических решений, обеспечивающих работоспособность системы.

На протяженную линию передачи видеосигнала от передатчика до приемного видеооборудования, а значит и на передающее оборудование могут воздействовать внешние электромагнитные наводки и помехи от различных источников. Это могут быть «земляные» токи, грозовые разряды, импульсные помехи от высоковольтного оборудования и т.д. Все это может привести к возникновению искажений изображения, а часто – к выводу оборудования из строя.

Таким образом, передатчики в системах охранного видеонаблюдения подвергаются постоянному воздействию всех перечисленных выше факторов. Поэтому необходимо акцентировать внимание на таких моментах в построении устройств передачи изображения, которые устраняют или существенно уменьшают риск возникновения негативных последствий. Рассмотрим основные критерии, по которым следует выбирать видеопередатчики для использования в системах охранного телевидения.

Герметичность

Передатчики видеосигнала, устанавливаемые на открытом пространстве, должны быть герметичны. Это очень важно, поскольку позволяет защитить электронное оборудование от влаги. На фото 1 приведен пример типичного видеопередатчика герметичной конструкции. Корпус изготовлен из термостойкой и ударопрочной пластмассы – поликарбоната. Поликарбонат обеспечивает механическую прочность корпуса в условиях низких отрицательных температур. Герметизация обеспечивается соединением типа «выступ – паз» и наличием уплотнителя. На корпусе установлены гермовводы для подключения линий связи и электропитания. Дополнительную защиту схемы обеспечивают такие меры, как лакировка печатной платы и элементов, установленных на нее, использование герметичных трансформаторов электропитания и сигнальных цепей. Внешний вид герметичных трансформаторов приведен на фото 2. В случае если видеопередатчик устанавливается в герметичный кожух, то он может быть выполнен в виде модуля, как показано на фото 3. По функциональным возможностям он обеспечивает питание видеокамеры, усиление и коррекцию видеосигнала для передачи в линию, гальваническую развязку, защиту электроники от помех и наводок.

Гальваническая развязка

Гальваническая развязка передатчиков и приемников видеоизображения в распределенных системах охранного телевидения является одним из средств решения проблем, связанных с заземлением видеооборудования. Задача устройств гальванической развязки: устранение путей протекания каких-либо посторонних (в том числе и промышленных) токов по цепям передачи видеосигнала. Применение в видеопередатчиках изолирующих герметичных видеотрансформаторов (см. фото 1, 2, 10) в качестве устройств гальванической развязки позволяет:

  • в сотни раз уменьшить на изображении помехи, вызванные протеканием промышленных токов по сигнальным цепям;
  • защитить от пробоя выходные цепи передатчиков и входные цепи приемников видеоизображения при возникновении опасной разницы потенциалов между точками заземления передающего и приемного оборудования;
  • подключить передающее и приемное видеооборудование к цепям защитного заземления без образования помех в сигнальных цепях.

Таким образом, видеотрансформаторы выполняют как функцию защиты видеооборудования, так и функцию уменьшения помех на экранах мониторов.

Питание видеокамеры

Как уже отмечалось выше в местах установки видеокамер обычно отсутствует низковольтное напряжение питания. Тянуть низковольтные цепи на значительные расстояния очень сложно, поскольку достаточно большое напряжение реально упадет на проводе питания. Значение падения напряжения зависит от длины линии, диаметра провода, тока потребления видеокамеры. Поэтому для оптимального построения системы видеонаблюдения очень важно, чтобы в состав видеопередатчика входил стабилизатор напряжения постоянного тока 12 В с малыми пульсациями для питания видеокамеры. Наличие такого стабилизатора существенно упрощает построение и монтаж системы видеонаблюдения. В этом случае, видеопередатчики и видеокамеры в полной мере будут подготовлены к круглосуточной работе в нестабильных сетях электропитания промышленных объектов.

«Грозозащита»

Вопросы защиты видеооборудования от импульсных помех и наводок, причинами которых являются многочисленные факторы, так называемая «грозозащита» оборудования рассматривалась в многочисленных публикациях разных авторов, в различных изданиях. Действительно, это настолько серьезный момент, что оставлять его без внимания нельзя. Совершенно очевидно, что передатчики видеоизображения должны иметь элементы, обеспечивающие как собственную защиту, так и защиту видеокамеры от воздействия импульсных высоковольтных наводок и помех. К элементам защиты относятся:

  • гальваническая развязка передающего и приемного оборудования (например, видеотрансформатор);
  • варисторы и предохранители, обеспечивающие защиту видеопередатчика по цепям питания 220 В / 50 Гц;
  • быстродействующие защитные диоды и газоразрядники, обеспечивающие многоступенчатую защиту по линиям связи с видеокамерой и приемным оборудованием.
Управление нагревателем

При установке видеопередатчика в термокожух, в его состав желательно включить элемент управления нагревателем термокожуха, термодатчик (фото 4) и контактные группы для подключения нагревателя. Термодатчик включает нагревательный элемент, если температура внутри термокожуха падает ниже заданного предела, и выключает его при нагреве до верхнего заданного значения. Таким образом, обеспечивается стабилизация температурного режима работы электронного оборудования. Эта несложная опция позволяет обеспечить необходимые температурные условия работы видеокамеры, что особенно актуально для отечественного холодного климата. Из технологических новинок можно отметить и более интересное решение: предварительный прогрев термокожуха при низких отрицательных температурах окружающей среды. Предварительный прогрев резко уменьшает вероятность выхода из строя видеокамеры при аварийном отключении электросети. При этом модуль приобретает полностью законченный вид, не требующий дополнительного оборудования.

Предварительная коррекция АЧХ

Известно, что при значительном расстоянии между передающим и приемным видеооборудованием коррекции АЧХ тракта только в приемнике недостаточно. В результате затухания на высоких частотах «вспышка» видеосигнала на расстоянии 1000 м уменьшается в 100 раз, а на расстоянии 2000 м ослабление составит 10000 раз. Полезный сигнал «утонет» в шумах и наводках. Изображение станет нечетким, размытым, мелкие детали практически будут отсутствовать. Поэтому для больших дистанций передачи видеосигнала передатчики видеоизображения осуществляют предкоррекцию видеосигнала, обеспечивая частичную компенсацию потерь в линии связи и увеличение отношения сигнал / шум на входе приемного оборудования. При этом, чем больше затухание в линии передачи, тем большие предискажения требуются в передатчике видеосигнала; т.е. необходимы изменения цепей коррекции в зависимости от дистанции. Удобнее осуществлять изменение цепей предискажений в видеопередатчиках дискретным переключением. На фото 5 показаны переключатели, с помощью которых осуществляется коммутация цепей частотной коррекции в зависимости от длины линии связи. На фото 7, 8, 9 приведены изображения тестовой таблицы с перекоррекцией, недостаточной коррекцией и оптимальной коррекцией видеосигнала в диапазоне рабочих частот. В первых двух примерах (см. фото 7, 8) легко заметны дефекты изображения: снижение контрастности и разрешения, искажения вертикальных линий. Использование в передатчике дополнительной коррекции сигнала позволяет оптимальным образом сформировать АЧХ тракта передачи видеоизображения.

Монтаж оборудования

При выборе видеопередатчика следует обращать внимание на способ подключения электрических цепей к нему на объекте. Как правило, монтаж передающего видеооборудования происходит в полевых условиях. Поэтому подключение всех цепей к передатчику должно быть устроено как можно более просто, без использования паяльников и специального инструмента, например, с помощью клеммных колодок и отвертки. «Отверточный» монтаж позволяет существенно облегчить жизнь установщиков видеооборудования и повысить надежность подключений, что очень важно для систем охранного телевидения. Можно отметить и еще одну полезную опцию модуля видеопередатчика, изображенного на фото 3. Модуль оснащен отрезком коаксиального кабеля с BNC разъемом, при помощи которого видеопередатчик подключается к выходу стандартной видеокамеры.

Многоканальное оборудование

В зависимости от расположения видеокамер на охраняемом объекте, например, при видеоконтроле периметра, часто выгоднее использовать не одноканальный, а многоканальный передатчик (фото 6). Речь идет о случаях, когда видеокамеры монтируются на небольшом расстоянии друг от друга. Функционально удобнее и проще подключить их к одному прибору. В таких устройствах, как правило, имеется возможность изменения напряжения питания видеокамеры для компенсации падения напряжения на проводах питания (фото 10). Представленный на фото 11 вариант передачи изображения позволяет существенно уменьшить как расходы на оборудование, так и объем, и сложность монтажных работ.

Конечно же, приборы от разных производителей значительно отличаются по конструкции и характеристикам, но возможности и оснащенность во многом определяются условиями эксплуатации. Как Вы убедились, в конструкциях, предназначенных для работы на улице, должны присутствовать определенные характерные особенности. Само слово «уличные» говорит за себя. Поэтому при выборе оборудования для построения системы видеонаблюдения необходимо самым тщательным образом проанализировать, удовлетворяет ли выбранное Вами оборудование необходимым условиям эксплуатации. Конечно, можно построить систему и на устройствах, не работающих в «уличных» условиях. Но в конечном итоге их необходимо будет дополнительно герметизировать, защищать по всем подходящим электрическим цепям от всевозможных внешних факторов, т.е. усложнять монтаж и тратить дополнительные средства. В итоге Вы получите, как правило, менее надежную систему, по более высокой стоимости. И не забудем о главном: выбирая оборудование для определенных условий эксплуатации особенно важно, чтобы приборы удовлетворяли этим самым условиям эксплуатации. В противном случае, построенная Вами система, прекрасно работающая в нормальных условиях, может выйти из строя при первой же грозе, или при любом случайном попадании влаги на электронное оборудование, или зимой, когда температура воздуха станет отрицательной. Универсальный совет «семь раз отмерь, один раз отрежь», как никогда подходит для выбора оборудования систем охранного видеонаблюдения.

Полезные советы по построению систем видеонаблюдения

1. Знакомого человека, в поле зрения видеокамеры можно узнать на расстоянии не больше фокусного расстояния объектива видеокамеры в метрах. Например, видеокамера с f=9мм позволит узнать человека на расстоянии до 9м.

2. Незнакомого человека, в поле зрения видеокамеры можно 100% идентифицировать на расстоянии не больше половины фокусного расстояния объектива видеокамеры в метрах. Например, видеокамера с f=9мм позволит идентифицировать человека на расстоянии до 4,5 м.

3. Обнаружить человека на объекте в поле зрения видеокамеры можно на расстоянии равном семи фокусным расстояниям видеокамеры в метрах. Например, видеокамера с фокусным расстоянием 4мм позволит обнаружить человека на расстоянии до 28м.

4. Номер автомобиля распознается на расстоянии в 1,5 раза меньшем, чем фокусное расстояние объектива видеокамеры в метрах. Например, видеокамера с f=22мм позволит различить номер автомобиля на расстоянии до 15м.

5. Если на объекте хорошее освещение – смело используйте видеокамеры без ИК подсветки, если света маловато, например, только фоновый, то лучше устанавливать видеокамеры с ИК подсветкой, которая позволяет “видеть” видеокамере даже в полной темноте.

6. Видеосигнал с приемлемым качеством можно передать:

по кабелю RG-6 – на расстояние до 50м

по кабелю РК-75-2-11 ГОСТ – на расстояние до 100м

по кабелю РК-75-3-32 ГОСТ – на расстояние до 200м

по кабелю РК-75-4-11 ГОСТ – на расстояние до 400м

по “витой паре” (с использованием приемо/передатчиков PV-207 ) на расстояние до 300м

по “витой паре” (с использованием приемника PV-2003R-DSA ) на расстояние до 1300м

по “витой паре” (с использованием комплекта PV-351T + PV-2003R-DSA ) на расстояние до 2000м

Для подачи питания на видеокамеру лучше использовать провод ПВС или ШВВП.

7. Объектив с АРД на резкость нужно настраивать при полностью открытой диафрагме (в темноте или закрывая объектив светофильтром).

8. Недопустимо перегибать коаксиальный кабель, радиус изгиба должен быть не меньше 5-ти радиусов самого кабеля.

9. При прокладке сигнального кабеля старайтесь, чтобы кабель был не ближе 30см от силовых линий (по ПУЭ не менее 50 см).

10. Чтобы избежать возможные наводки, желательно запитывать видеокамеры от специализированных источников питания, с отдельным выходом для каждой камеры, например PV-DC10A+ или PV-DC5A+

11. При прокладке линий более 100м “воздушным” путем рекомендуем использовать приборы грозозащиты, например, LLT-701.

12. При построении разветвленных систем видеонаблюдения рекомендуем использовать приборы гальванической развязки для защиты от блуждающих токов, например изолирующий видеотрансформатор ВТ-Т.

Причины возникновения помех в изображении при выполнении установки видео камер наблюдения

Часто при установках видеокамер наблюдения встречаются различного свойства дефектов в виде помех изображения рассмотрим распространенные и часто встречаемые причины появления помех в видеосигнале видеокамер наблюдения Обратите внимание на заземление — не правильная схема с двойным заземлением камер приводит к появлению помутнения сдвига изображения, а также налаживание изображения с других камер. Проявление такого эффекта помех говорит что камеры заземлены и в схеме появился двойной контур заземления — что категорически не допускается так как это приведет к выходу из строя как видеокамер так и видеорегистратора.

Способы устранения:
Выявить камеры, которые с двойным контуром заземления-часто это камеры установленные на металлоконструкции. Для устранения сделать развязку диэлектриками и развязать связь металлического корпуса камеры и металлоконструкции используемой для монтажа камеры. Если оценить визуально возможные места двойного заземления не представляется возможным ни обходимо по очередно выключать из схемы по одной видеокамере при этом отключать цепь питания и видео входа видеорегистратора.Таким образом возможно установить каналы видеосигнала с присутствием двух контуров заземления. После устранения двойного контура заземления собрать и проверить схему заново убедившись в отсутствии помех. Обратите внимание что часто возникает Помехи вызванные разницей потенциалов, связанные с контурами заземления монитора и камер. Необходимо применять качественное заземление.

2. Также часто встречается брак или не точное выполнение правильного соединения сигнального кабеля с коннекторами

Способы устранения:
Проверить надежность, и верность соединения — обратить внимание что возможно касание между собой жил сигнального кабеля после полной сборки – установки коннектора между корпусом разъёма и жилами кабеля или отдельно торчащим волоском провода. Внимательно осмотреть выявить жилы, которые распустились с оплетки устранить, надеть диэлектрик, поставляется в комплекте с коннектором в виде ПВХ трубки либо изолировать изолирующими матерьялами. Если применены разъемы открытого вида с площадкой под винт обратить внимание — после накручивания разъема на коннектор видео входа видеорегистратора не должно произойти соединения близко расположенных жил кабеля – убидиться в отсутствии торчащих вне клемах жил кабеля. Не редко встречается и брак самого разъема в этом случае заменить на новый.

3. Поврежденный сигнальный и питающий кабель .
Часто применяя старые кабеля видео сигнала, производя только замену на новые камеры наблюдаться помехи в видео сигнале – это вызвано повреждением линии кабеля

Способы устранения:
Прокладка новых линий передачи видеосигнала надлежащего качества. Возможно проблему удастся решить подавая питание отдельные линии с искажениями с индивидуального блока питания.

4. Не редко в месте прокладок линий видео кабеля можно встретиться с сильными источниками электромагнитного поля. Приборы вызывающие сильные импульсы такие как электродвигатели, трансформаторы, сильные блоки питания, генераторы тока производственных и бытовых устройств, радио передатчики. Из бытовых приборов микроволновые печи, а также импульсы ламп дневного света.

Способы устранения:
Применять кабеля повещённым классом защиты экрана рассчитанные на работу в местах с сильным электромагнитным полем. Обходить источники электромагнитных полей не прокладывая в непосредственной близости линии передачи сигнального видео кабеля.
Для применения на больших площадях производственных объектах кабель UTP c применением симметричного сигнала приёма передатчиками также обеспечит меньшее появление паразитного сигнала в кабелях линии видео передачи

  • пассивный 16-канальный видео трансивер видеонаблюдения

5. В ночное время видеокамеры начинают работать с помехами горизонтальные полосы на изображении.
Причина не хватка питания видео камер при включении ИК прожектора так как возрастает нагрузка потребления камер суммарно в ночное время работы при включении ИК прожекторов которые являться основными потребителями.

Способы устранения:

При помехах в виде горизонтальных строк повторяющеюся по всей высоте экрана указывает на неисправности линии питания камер, а также возможно не верной работы блока питания или сильно слабого напряжения доходящего к камере при длинных дистанциях на удавленных камерах.
Установить блок питания для необходимой силы тока для работы видеокамер из расчета – силы тока употребления камер при включении ИК прожектора суммарно. Применять специализированные блоки питания для CCTV камер с регулировкой напряжения на выходе блока питания если линии кабеля сильно длинные. Заменить кабель с большим сечением жил питающего кабеля или по возможности подать напряжение с более ближнего расстояния от камер. Применить схему питания с дополнительными преобразователями AC/DC или DC/DC таким образом можно добиться необходимого напряжения и силы тока на входе видеокамер с большими дистанциями линий передачи.

6. Это должны знать все кто занимается установкой камер наблюдения
Внимание !
Не применять блоки питания рассчитанные для питания камер CCTV c регулируемым напряжением для питания DVR. Такие блоки рассчитанных для работы с камерами наблюдения. При питании от такого блока видеорегистратора высока возможность выхода HDD из строя! Помните шина питания +12V подаваемая на вход цепи питания видеорегистратора напрямую поступит в цепь питания HDD, без коррекции напряжения, не посредственно самим видеорегистратором, который задает только второе подаваемое напряжения шины питания для HDD +5V. Подымая напряжение c блока питания для CCTV камер в случаях удаленных линий вы тем самым поднимаете напряжение в цепь питания HDD диска в котором подается завышенное напряжение. HDD рассчитан на входное максимальное напряжение+13.2V. Напряжение выше +13.2 V не допустимо и приводит к выходу из строя HDD.

6. Переусиление видео сигнала.
Большие значения дБ уровня усиления сигнала установленное в видеокамере при ручном регулировании вызывает избыточное усиления сигнала который будет виден как шум фона на изображении

Способы устранения:

Переключите камеру в режим AEG. Авто или снизить уровень усиления сигнала до момента исчезновения шума вызванным пере усилением видео тракта камеры.

Не когда ни прокалывайте линии сигнального и кабеля видеонаблюдения в непосредственной близости с силовыми линиями.

При сложностях с заменами кабеля и изменения прокладки линии-применяйте специальные гальванические развязки, применение специальных устройств для борьбы с паразитными помехами нужно применять в случаях если не удалось устранить помехи другими способами. Устройства для борьбы с паразитными шумами в цепях видео сигнала и в цепях питания — видео трансформаторы, оптоэлектронная развязка позволят избежать ситуаций возникновения паразитных шумов в цепи питания и видео сигнального кабеля.

Правильно спроектированная схема прокладки кабеля, применение необходимого стандарта кабеля и правильные режимы работы цепей питания камер наблюдения помогут изначально избежать трудности которые возникнут если пренебрегать правилами построения схемы линий передачи видеосигнала и питания камер наблюдения .

Принцип действия грозозащиты для витой пары

Гальваническая развязка для витой пары

Область применения, где необходима грозозащита (при передаче информационных сигналов по витой паре):

  • PPoE сети.
  • Локальные сети.
  • Ethernet сети.
  • Wi-fi сети.

Виды воздействия на сетевую аппаратуру:

  • электростатическое воздействие (связано с электростатическими полями до грозы, и грозовыми разрядами);
  • электромагнитное воздействие (индуктивное влияния молнии на кабель);
  • гальваническое воздействие (попадание токов молнии в заземление);
  • ток молнии (прямой удар молнии);

Гальваническая развязка необходима для разделения слаботочных (информационные каналы витой пары) и силовых цепей (сеть питания). Для питания коммуникационной аппаратуры используется сеть переменного напряжения 220В, в которых очень часто происходят скачки электричества, доходящие до несколько тысяч вольт. Это приводит к выводу из работы соответствующей подключенной аппаратуры.

Принцип действия

Принцип работы любого грозозащитного оборудования заключается в отведении поражающего заряда на землю. Типичная схема (рис. №1) построена на основе диодного моста со специальным замыкающим диодом.

Рис. №1. Типовая схема защиты

При возникновении между линиями передачи разницы потенциалов 6-7 В, диод D11 замыкается и статическое напряжения спускается на землю. Также вместо диодов можно использовать газовые разрядники, варисторов или стабилитронов. Данную схему можно применить для защиты сетевых карт, switch-а и хабов в кабеле:

В процессе нормальной работы разность потенциалов между линиями относительно небольшая (близкая к нулю). Между корпусом и линиями также не должно быть напряжения. Диод D11 является сопрессором: он запирается при перенапряжении между линиями, и отпирается для следующего срабатывания. Таким образом, при достижении пороговой разности, ток протекает не между линиями, а через диод и заряд переходит на землю. Далее, работа сети продолжается в нормальном режиме до следующего разряда.

Замечания по подключению:

  1. Все схемы защиты, подключенные к портам (ПК, свитч) обязательно соединить между собой.
  2. У компьютеров на корпусе есть болт заземляющий. Но если сам корпус не заземлен, то при вставке вилки в розетку мы не соблюдаем полярность и делаем это не умышленно. Это ведет к наводке напряжения равное половине напряжения розетки (110 В). В этом случае заземлять грозозащиту на болт не рекомендуется. Это не спалит оборудование, а вот глюки в работе обеспечит.
  3. Найти «землю» и заземлить туда грозозащиту.
  4. Работают при длине кабеля более 100 м.
  5. Заменить диод сопрессор на варистор нельзя, так как возрастает ток утечки. Вызывает неработоспособность схемы.

Как и к любому оборудованию защиты, применяются требования к работе (данная спецификация приведена на примере грозозащиты кабеля Ethernet RJ45):

    Время реакции:

Установка

При проектировании коммуникационных цепей встает вопрос о монтаже гроззащитного оборудования, так как кабели могут идти не только внутри помещения/цеха/ другого объекта, но и снаружи. Установка грозозащиты осуществляется на:

  1. Корпус установки.
  2. ДИН рейка.
  3. На кабеле по ходу прохождения сигнала.

Необходимо отметить, что защиту нужно устанавливать двухстороннюю. Это объясняется тем, что сопротивление кабеля в любом случае не равно нулю. Так как ток протекает по пути наименьшего сопротивления, то в данной ситуации он может поразить работающее оборудование с другой стороны кабеля.

Также необходимо отметить, что грозозащита вызывает затухание идущего по кабелю сигнала. Поэтому необходимо обращать внимание на технические характеристики устройства. При достаточной длине кабеля сигнал имеет свойство искажаться.

Если после выше написанного сеть не заработала, сделайте следующее:

  1. Тщательней ищите источник помех (возможно, рядом проложен кабель 220 В).
  2. Имеет место проверить «землю». Для большей уверенности протяните кабель «земли» от электрощитка.
  3. Поставьте защиту с одной стороны (ВНИМАНИЕ: данный шаг ОЧЕНЬ аккуратно, МОЖЕТ ВЫГОРЕТЬ ВСЕ ОБОРУДОВАНИЕ).
  4. Измените тип грозозащиты.

Следует отметить, что грозозащита повышает надежность в разы, но не все 100%. Грозозащита может и сгореть. К этому обычно приводит маленькое время реакции на открытие диода, что исключает возможность мгновенно перенаправить заряд на «землю».

Заземление и зануление

Заземлить необходимо на заранее проверенную «землю». Это необходимо для того, чтобы заряд не скопился на корпусе детали. Нельзя заземлять на водопроводные трубы или трубы отопления, так как они обладают очень высоким сопротивлением (ток протекает по пути наименьшего сопротивления). Исходя их схемы защиты на примере фирменного нетпротекта (рис. №2) земля нужна для стекания заряда. В другом случае заряду некуда «деваться», и он может скопиться на корпусе оборудования, что приведет к поражению электрическим током любого человека.

Рис. №2. Нетпротект. Типовая схема

Зануление производить не желательно. Разница между «нулем» и «землей» в том, что ноль – это шина, которая служит для замыкания цепи и протекания тока (ее потенциал равен нулю). В то время как земля – это необходима для выведения накопившихся зарядов и защиты от статики. Зануление не оказывает положительного влияния на грозозащиту, а наоборот, повышает частоты ее срабатывания. Это ложные срабатывания. Соответственно, будут частые перерывы в работе сети (совет: зануление допускается в том случае, если нет возможности заземлить на настоящую «землю»).

Сравнение самодельных и фирменных грозозащит

Для сравнения возьмем фирменную внешнюю грозозащиту (рис. №3) с HPoE ( high power over Ethernet). Степень защиты IP54.

Рис. №3. Внешняя грозозащита.

Обладает следующими преимуществами:

  1. Низкие потери сигнала.
  2. Работоспособность не теряется при попадании напряжения 220 В.
  3. Подавления помех.
  4. Высокая стойкость при отведении на землю большого тока (больше 5 КА).
  5. Поддерживают обе схемы организации дистанционного питания.

Спецификация устройства:

  1. Подключения идет через LSA-коннектор.
  2. Защищаются с 1 – 8 проводники.
  3. Потери в частотах с 5 – 95 МГЦ меньше 0,4 дБ.
  4. Затухание переходное равно при 90 МГц больше 30 дБ:
    • Ограничение дифференцированного напряжения меньше ±7,5 В.
    • Время срабатывания меньше 10 нс.
    • Максимальное напряжение переменного тока 250, постоянного 350.
    • Отводимый ток меньше 5000 А.

Данное устройство самодельное, и по внешнему виду доверия не вызывает (рис. 4).

Рис. 4. Самодельное устройство

Данное устройство является гальванической развязкой между сетевой картой ПК и свитчем. С основными задачами справляется: отводит накопившееся заряды, но с прямым попаданием молнии не справится, так же как и не справится с пробоем напряжения в 220 В. Можно использовать как временную защиту, которую в скором времени заменят. Единственный плюс – цена (совет: хорошая вещь и стоит хорошо).

В конце хотелось бы отметить, что говоря о защите любого устройства, то ни одно специальное оборудование не защитит вашу сеть, а лишь минимизирует потери.

Помехи в видеосигнале — причины их появления и способы устранения

В данной статье мы рассмотрим наиболее частые причины возникновения помех видеоизображения в системах видеонаблюдения. Появление помех в видеоизображения, как правило, связаны с местом установки оборудования системы. Их можно увидеть при первом запуске системы, однако стоит учитывать, что при пусконаладке не все оборудование может работать, и всегда остается вероятность появления помех при дальнейшей эксплуатации. Так, на крупных промышленных объектах с линиями связи большой длинны, избежать появления помех, не применения специальных мер, обычно, сразу не удаётся. Искажения могут возникнуть, если при проектировании системы видеонаблюдения, не было уделено должного внимания вопросам электропитания, заземления, экранирования и применения (или хотя бы возможности такого применения) дополнительных технических средств.

И так непосредственно о причинах: Самой распространенной причиной возникновения помех в системах видеонаблюдения являются «блуждающие» токи заземления. Принцип образования таких помех крайне прост. Рассмотрим механизм образования помехи на изображении, снятом с обыкновенной, аналоговой видеокамеры, при использовании линий связи на базе коаксиального кабеля, в простейшей системе видеонаблюдения. При использовании коаксиального кабеля, мы получаем несимметричную схему передачи видеосигнала, при использовании которой, оплетка (экран) кабеля выполняет функцию второго проводника для передачи видеосигнала. Такая схема подключения изображена на Рис.1

В идеальном, теоретическом примере, оплетка кабеля будет «чиста» от любых неполезных токов, но в реальной, работающей системе видеонаблюдения, по оплётке (экрану) коаксиального кабеля, помимо полезных сигналов, будут протекать «блуждающие» токи. Причина их появления — наличие разности потенциалов между разнесенными приборами системы видеонаблюдения. Пример проявления «блуждающих» токов изображен на Рис. 2

Пример «очистки» системы видеонаблюдения от «блуждающих» токов приведен на Рис. 3

В нашем примере, это будет разница потенциалов между удаленной видеокамерой и монитором, образующаяся на коаксиальном кабеле за счет протекания между их точками заземления токов наводящихся от различного промышленного оборудования, кабелей питания, трансформаторов и т.п. Причем, элементы системы могут не иметь прямого контакта с землей, а соединяться с ней через цепи блоков питания. Таким образом, практически в любой системе видеонаблюдения образуется как минимум один «паразитный» контур заземления, при котором, в цепи видеосигнала, начинают протекать токи, источником которых могут являться: Транспорт, линии электропередач, трансформаторы и мн. др.

«Паразитные» контуры заземления образуются как между камерой и монитором (видеорегистратором), так и между несколькими удаленными камерами (Рис.1). В результате сложения промышленных токов с видеосигналом на изображении возникают разнообразные помехи, искажения, нарушается синхронизация. Разница потенциалов между точками заземления видеокамеры и приемного оборудования на объекте может достигать десятков и сотен вольт, и чем больше дистанция до камеры – тем выше напряжение. В свою очередь, это может проявляться не только возникновением помех в видеоизображении, но и вызвать неисправности системы видеонаблюдения, а в худшем случае – поражение людей электрическим током.

Возможные проблемы при проявлении «паразитных» контуров заземления:

  • Появление помех и искажений видеосигналастановится. Заметнее с увеличением дистанции передачи изображения и уменьшением уровня полезного сигнала.
  • При особенно неудачном заземлении оборудования, велика вероятность получения электрического удара током, при подсоединении/отключении разъемов кабеля.

Очевидно, что для устранения искажений необходимо разорвать все «паразитные» контуры заземления.

Существует несколько вариантов их устранения. Во-первых, нужно применять камеры видеонаблюдения с изоляцией корпуса и разъемов от термокожуха и кронштейна. Экран (оплетка) кабеля и разъемы подключения к видеокамере должны быть тоже изолированы от заземления. Но при наличии собственного питания видеокамеры в удаленной точке, от сети 220В, все равно образуется «паразитный» контур через цепи блока питания и нулевого провода электросети, а последний, как правило, заземлен. Поэтому будет более правильно, передавать видеосигнал от камеры на приемное оборудование не напрямую, а через некую развязку, которая не обеспечивает прямого контакта передающей линии связи с приемной. Пример применения такой развязки изображен на Рис. 3.

Наибольшее распространение получили изолирующие видеотрансформаторы и оптоэлектронные развязки.

Схема их подключения довольно проста, она изображена на Рис. 6. При этом, видеотрансформатор может устанавливаться как на передающей, так и на приемной стороне. При таком подключении «блуждающие» токи промышленной частоты на оплетке кабеля исключается. Оптоэлектронная развязка действует аналогично, но требует источника электропитания, в связи с этим их, как правило, устанавливают на приемной стороне кабельных линий.

Результат — устранения «блуждающих» токов, и как следствие – нормализация изображения с камер видеонаблюдения.

Теперь несколько слов о помехах и искажениях видеосигнала, возникающих при отсутствии «паразитных» контуров заземления, но с проявлением, аналогичным рассмотренным выше. Речь идет о периодической импульсной помехе, которая распространяется по нулевому проводу сети 220 В. Как правило, такие помехи возникают при использовании на объекте, импульсных блоков питания. Тактовая частота этих блоков питания – несколько десятков килоГерц. Путь, по которому помеха попадает в изображение — емкости между обмотками трансформаторов блоков питания видеооборудования и цепи, связанные с нулевым проводником сети 220 В. Внешнее проявление импульсных помех изображено на Рис. 4, а результат ее устранения с помощью видеотрансформатора приведен на Рис. 5.

В последнее время широкое распространение получили цифровые системы регистрации видеосигнала на базе обычных компьютеров (PC). Однако, в многоканальных системах на базе PC, при длине кабельных линий в несколько десятков метров и выше, на изображении образуются помехи с широким частотным спектром, источником которых являются конструктивные особенности импульсных источников питания компьютера. Также следует отметить, что при замене цифрового видеорегистратора на базе РС на аналогичный автономный регистратор «none PC», искажения существенно снижаются или устраняются полностью. Разница в конструкции и схемотехнике бытового компьютера и специализированного автономного видеорегистратора дает о себе знать. В любом случае искажения и помехи изображения устраняются путём подключения всех видеокамер к компьютеру через гальванические развязки и видеотрансформаторы.

Не менее распространённой причиной искажений изображения являются электромагнитные помехи и наводки на кабельные линии.

Электрические провода кабельных линий (коаксиальный кабель или витая пара) характеризуются волновым сопротивлением и ёмкостью, ограничивающими максимальную дистанцию передачи видеосигнала от передатчика до приемника.

При подборе кабельной продукции следует отдавать предпочтение качественным отечественным изделиям и зарекомендовавшим себя импортным производителям. Стоит отметить, что кабельная продукция отечественного производства находится «на высоте» и, как правило, превосходит большинство импортных аналогов.

На промышленных объектах, огромное количество сигнальных кабельных линий и кабелей питания, образуют большую, широкополосную антенну, принимающую электромагнитные поля излучаемые различными источниками. В их числе могут быть наводки от соседних кабелей, радиоизлучения, магнитные и электромагнитные излучения трансформаторов, импульсных источников питания, ЛЭП, дросселей энергосберегающих ламп и т.п. Так же стоит учитывать, что медная или алюминиевая оплетка коаксиального кабеля абсолютно не защищает широкополосный видеосигнал от низкочастотных, промышленных наводок и помех. Механизм образования синфазных, относительно земли, помех показан на Рис. 9. Синфазные помехи, также отрицательно воздействуют на цепи питания оборудования системы видеонаблюдения. Поэтому, на промышленных объектах, длинные цепи питания с малым напряжением постоянного тока, рекомендуется прокладывать в экране или заземленном метало-рукаве. Воздействие наведенных напряжений Е1 и Е2 (Рис. 9) на центральную жилу и экран коаксиального кабеля, приводит к возникновению напряжения помехи Е3, суммирующуюся с полезным видеосигналом. Значение Е3 зависит от величины наведенных помех Е1 и Е2, параметров линии связи и множества других факторов. Далее вступает нехитрый закон соотношения Сигнал – Шум. Соответственно, если уровень Шума (Е3) будет выше уровня полезного сигнала – возникнут искажения последнего или его полное замещение. При этом, стоит учитывать, что аналоговый видеосигнал является широкополосным, а отдельные его части могут быть совсем небольшого уровня, что также влияет на возникновение помех и искажений.

Синфазные помехи, и как следствие искажения и помехи видеоизображения, присутствуют в любой системе видеонаблюдения, но из-за их незначительного уровня, как правило, не вызывают значительных проблем и могут быть совершенно не заметны. Другое дело, когда результат их воздействия становится неприемлемым с точки зрения качества изображения, и необходимо принимать меры, исключающие их негативное влияние.

Источниками синфазных помех могут являться:

  • Станки, электромоторы, газоразрядные лампы;
  • трансформаторные подстанции и высоковольтные ЛЭП;
  • импульсные преобразователи, блоки питания и источники бесперебойного питания;
  • электросварка;
  • электротранспорт;
  • передающие антенны;
  • грозовые разряды;

кабели питания всего перечисленного оборудования и многое другое.

Визуальные проявления синфазных помех зависят от их мощности и частотного диапазона. На Рис. 7 хорошо видны искажения изображения, вызванные прокладкой коаксиальных кабелей в непосредственной близости от мощных силовых кабелей промышленного оборудования. Характер искажений свидетельствует о наличии синфазных помех от оборудования со случайным, импульсным энергопотреблением. Зачастую на промышленных объектах имеется множество источников помех, и проложить коаксиальные кабеля таким образом, чтобы исключить наведение синфазных помех на изображении оказывается невозможным. Радиочастотные наводки, от расположенных в непосредственной близости передающих антенн, приводят к искажениям изображения и мерцанию картинки на экране монитора. Рис. 10.

Значительно менее подвержены синфазным помехам симметричные линии передачи видеосигнала на основе витой пары. Применение же экранированной витой пары позволяет, на промышленном объекте, получить максимальную дистанцию передачи видео, гораздо большую, по сравнению с коаксиальными кабелями. Следует отметить, что максимальная дистанция передачи видеосигнала по коаксиальному кабелю ограничивается внешними помехами и наводками, и составляет до 400м., а по витой паре – частотными потерями видеосигнала в линии связи, и может достигать 600м., при использовании пассивного оборудования, и 2500м. при использовании активного оборудования передачи видеосигнала. Но универсальным средством, работающим как на симметричных, так и на несимметричных линиях и устраняющим весь «мусор» от воздействия синфазных помех служат специализированные широкополосные фильтры. Фильтр включается в разрыв любой двухпроводной линии связи и уменьшает искажения изображения до приемлемой величины, не внося при этом потери в видеосигнал. Стоит отметить, что такие фильтры, как правило, уже встроены в активное оборудование передачи видеосигнала по Витой паре.

Идеальным же способом передачи видеосигнала, не подверженному ни одним из перечисленных форм наводок, помех и искажений, является оптоволоконная передача видеосигнала, однако и она не исключает возникновение искажений, вызванных помехами по питанию оборудования.

На Рис. 8 и Рис. 11 виден результат включения фильтров, в линию связи по коаксиальным кабелям, при рассмотренных выше воздействиях синфазных помех.

Из вышеизложенного можно сделать следующие выводы:

  • в условиях промышленных объектов существуют разнообразные причины возникновения помех и искажений видеосигнала;
  • вероятность искажений повышается с увеличением протяжённости и количеством линий передач видеосигналов;
  • наиболее типичными причинами образования помех являются «блуждающие» токи заземления и синфазные наводки на сигнальных кабелях системы видеонаблюдения.

Основными методами борьбы с помехами изображения являются:

  • экранирование и заземление;
  • гальваническая развязка;
  • фильтрация синфазных наводок по линиям передачи видеосигнала;
  • фильтрация помех по цепям электропитания видеооборудования;
  • разнесение и ориентация линий связи относительно силовых цепей и источников помех;
  • выбор качественной кабельной продукции;
  • использование симметричных проводных линий связи на основе витой пары;
  • использование волоконно-оптических линий связи.

При проектировании системы видеонаблюдения и выборе ее компонентов рекомендуется обращаться за консультацией к производителям и установщикам видеооборудования, а по возможности, прибегнуть к услугам профессионалов. Специалисты помогут Вам выбрать, из всего многообразия, приборы оптимальные для Вашей конкретной задачи. Не забывайте, что качество системы закладывается именно на этапе ее проектирования. В техническом проекте или техническом задании на построение системы видеонаблюдения должно быть предусмотрено дополнительное оборудование, обеспечивающее качество передачи видеоизображения. В противном случае ошибки Вам гарантированы. К сожалению, в обычной практике выбор в пользу того или другого оборудования основывается, зачастую, не на технических характеристиках, а только на его цене.

При выборе оборудования и специалистов помните:

Читайте также:  Камера видеонаблюдения беспроводная мини уличная для дачи
Оцените статью
Добавить комментарий