Что понимается под огнестойкостью строительной конструкции

Охрана труда и БЖД

Охрана труда и безопасность жизнедеятельности

Огнестойкость строительных конструкций

Для строительных конструкций, а также зданий или сооружений важным фактором является огнестойкость. Огнестойкость — это способность строительных конструкций сохранять свои рабочие функции под действием высоких температур пожара. Огнестойкость зданий и сооружений делят на пять степеней, которым должны соответствовать пределы огнестойкости строительных конструкций и пределы распространения огня по ним. В соответствии со степенью огнестойкости и категорией пожарной опасности производства определяют этажность здания.
Для жилых зданий количество этажей и допустимая площадь застройки находятся в зависимости от степени огнестойкости. Для промышленных зданий для определения допустимой этажности проводят вначале оценку взрывопожарной опасности производства (категорию пожарной опасности).
Огнестойкость строительных конструкций характеризуется пределом огнестойкости П. Под пределом огнестойкости понимают время, по истечении которого конструкция теряет несущую или ограждающую способность. Потеря несущей способности означает обрушение строительной конструкции при пожаре. Потеря ограждающей способности означает прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции трещин, через которые могут проникать в соседние помещения продукты горения.
Различают фактический и требуемый предел огнестойкости. Требуемая огнестойкость — тот минимальный предел огнестойкости Лтр, которым должна обладать соответствующая строительная конструкция, чтобы удовлетворить требованиям пожарной безопасности. Значения требуемых пределов огнестойкости определяют опытным путем. Фактический предел огнестойкости Пф запроектированных или уже функционирующих конструкций определяют расчетным путем. Расчет зависит от того, по какому из названных выше признаков определяют предел огнестойкости.

Рис. 1. Пример определения предела огнестойкости
По признаку прогрева конструкции предел огнестойкости находят путем теплотехнического расчета. При этом определяют изменение температуры по сечению конструкции в процессе ее нагревания по стандартному температурному режиму. В этом случае изменение температуры строительной конструкции

где t — средняя температура нагревания, °С; τ — время нагрева.
По признаку потери несущей способности расчет предела огнестойкости состоит из двух частей: теплотехнической и статической. Теплотехническим расчетом определяют изменение температуры конструкции, а статическим несущую способность (прочность) нагретой конструкции. После выполнения статического расчета строят график снижения несущей способности во времени. По этому графику определяют предел огнестойкости. Он наступит, когда несущая способность уменьшится до значения рабочей нагрузки:

где Mp,t(Np,t) — несущая способность конструкции; Мн(Nн) — изгибающий момент или предельное усилие от рабочей нагрузки.
Теплотехнический расчет конструкций проводится на основе уравнения теплопроводности Фурье, которое характеризует изменение температуры в твердом теле во времени и пространстве. Для потока теплоты, вызывающей изменение температуры только в одном направлении по сечению конструкции (у), это уравнение имеет вид

где а — коэффициент температуропроводности; τ — время.
Для плоских и изгибаемых железобетонных конструкций, обогреваемых с одной стороны, это уравнение имеет вид

а для конструкций, обогреваемых по всей боковой поверхности колонны,

где tн — начальная температура; erfx — функция ошибок Гаусса; θ — относительная избыточная температура.
Обе эти формулы для определения ty справедливы при времени горения τ≤4, т. е. пригодны для расчета пределов огнестойкости любой величины, требуемой нормами.
При статическом расчете определяют величину критической температуры арматуры или предельного сокращения сечения бетона, при которых возникает предельное состояние конструкции.
Условия пожарной безопасности будут соблюдены, если

где Птр — требуемый предел огнестойкости;

где К — коэффициент огнестойкости, зависящий от типа конструкции и степени огнестойкости; Т — продолжительность пожара, ч;

где Qн —теплота сгорания; S — удельная загрузка пола помещения; q — удельная теплота пожара, которая зависит от скорости выгорания и полноты сгорания;

где z — коэффициент неполноты сгорания (для твердых горючих веществ z=0,95. 0,99); n — скорость горения вещества, представляющая собой потерю массы горючего вещества в единицу времени с единицы площади, кг/(м2·ч).
Продолжительность пожара

Следовательно, продолжительность пожара зависит от загрузки цола помещения, скорости выгорания горючих веществ и полноты их сгорания. Кроме того, на продолжительность пожара в помещении влияют условия поступления воздуха в зону горения. Это влияние учитывает коэффициент

где Ап — площадь пола в помещении, м2; Аок — площадь оконных проемов, м2.
Коэффициент β вводят в расчет в случае, когда он находится в пределах 4. 12. При меньшем значении р в помещении недостаточно воздуха и время горения увеличивается.
Если в помещении находятся разные горючие вещества, то продолжительность пожара определяют по веществу с большей нагрузкой пола. Пределы огнестойкости строительных конструкций не всегда удовлетворяют требованиям безопасности, вследствие чего предел огнестойкости стремятся повышать.
Поведение железобетонных конструкций при действии высоких температур различно для разных типов конструкций. Предел огнестойкости центрально сжатых железобетонных колонн с гибкой арматурой зависит отсечения колонн, теплотехнических показателей материала колонн, коэффициента изменения прочности бетона при действии высоких температур. Поэтому при необходимости увеличения пределов огнестойкости колонн рекомендуют увеличение сечения, выбор бетона с меньшим коэффициентом температуропроводности, снижение нагрузки на колонну, выбор бетона с более высокой критической температурой, что достигается подбором вяжущих веществ и соответствующих заполнителей для бетонов или применением жаростойких бетонов.
Повышение пределов огнестойкости свободно опертых плит и балок может быть достигнуто путем увеличе пия толщины защитного слоя бетона, снижения его температуропроводности, нанесения штукатурок или облицовок из малотеплопроводных материалов, уменьшения нагрузки и выбора арматуры с более высокой критической температурой.
Опыты и наблюдения на пожарах показали, что огнестойкость стальных несущих конструкций незначительна, они в основном под действием высоких температур теряют устойчивость. Предел огнестойкости металлических конструкций ограничивается несколькими минутами и зависит от их сечения и температуры пожара. Особенно неблагоприятные условия работы для металлических конструкций при пожаре создаются в тех случаях, когда они находятся в сочетании с горючими материалами, например деревянные прогоны и обрешетки, горючая кровля, заполнение перекрытий горючими материалами. Такое сочетание вызывает быстрое распространение пожара на значительной площади.
Увеличение огнестойкости металлических конструкций осуществляют с помощью технических и проектных решений. К техническим решениям, замедляющим нагрев конструкций до критических температур, относят применение штукатурки, облицовки вспучивающихся красок. Использование вспучивающихся красок очень выгодно. Окраска слоем 2,5. 3 мм по огнезащитному эффекту равноценна штукатурке или облицовочным плитам толщиной 2,5. 3 см.
В качестве строительного материала широко применяется древесина. Чтобы предотвратить ее воспламенение, необходимы защитные меры. Древесина, предварительно обработанная защитными средствами, подвергаясь действию огня, будет разлагаться, но ие воспламеняется. Вследствие этого горение открытым пламенем не будет возникать и распространяться от действия внешнего источника огня. Кроме общеизвестной и широко применяемой для строительных деревянных конструкций облицовки (штукатурки) обработка древесины может осуществляться с помощью обмазки, окраски, пропитки и минерализации.
Обработка древесины окраской состоит в том, что на поверхность древесины наносят плотный слой обмазки или краски, приготовленной из таких веществ, которые сами по себе не горят, достаточно долго не разрушаются в огне и малотеплопроводны.
Обработка древесины пропитыванием огнезащитными веществами — антипиренами более эффективно защищает от загорания, чем окраска. Но этот способ огнезащитной обработки более дорог и трудоемок.
Пластмассы и полимерные материалы, применяемые в строительстве, имеют очень малую огнестойкость. Уже при температуре 300°С они размягчаются и разлагаются.
Продукты разложения и горения обладают токсическими свойствами.
Наибольшее внимание уделяется огнезащите ненесущих (навесных) панелей с заполнителями из полимерных материалов.

Читайте также:  Как работает мультиплексор

Огнестойкость строительных конструкций и предел огнестойкости, основные характеристики материала

Огнестойкость — это один из основных эксплуатационных показателей сооружения характеризующий способность несущих элементов, стен и перекрытий здания сопротивляться воздействию огня и высокой температуры во время пожара. Этот показатель является обязательным при проектировании сооружения.

На основании определения степени огнестойкости зданий и сооружений выполняют расчёты различных инженерных коммуникаций: электропроводки, газо и водопровода. Данный показатель является основополагающим для определения мощности, типа и структуры различных систем пожарной безопасности:

  • Сигнализации;
  • Установок и автономных модулей пожаротушения;
  • Эвакуации и аварийного освещения;
  • Дымоудаления.

В соответствии с актуальными нормативами различают 8 основных степеней огнестойкости.

  • Первые три относятся к сооружениям, элементы которых сделаны из железобетона, штучных натуральных или искусственных камней. Основные различия относятся к материалам межэтажных перекрытий и крыши здания. Для первой категории — это железобетонные плиты, для второй, допускается применение металлических конструкций в стропильных системах покрытия без специальной огнезащиты. Для третьей категории допустимо применение древесины как для перекрытий, так и для стропильных систем. Деревянные элементы должны быть либо защищены штукатуркой (листовыми трудногорючими материалами), либо подвергнуться дополнительной обработке антипиренами.
  • К категории 3а и 3б относится здание каркасного типа. Однако если материалами для категории 3а являются незащищенные металлические конструкции (профилированные листовые стройматериалы), то здание категории 3б возводятся из массива древесины или клееного бруса, защищённого антипиреновыми пропитками и подвергнутого дополнительной огнезащите, значительно повышающей предел огнестойкости, EI 60 и более.
  • К 4 категории относятся здания из массива древесины или клееного бруса, имеющие огнезащиту в виде штукатурки. Незащищённые элементы конструкции грунтуются антипиренами.
  • Здания категории 4a (обычно одноэтажные каркасные) состоят из металлического несущего каркаса, обшитого горючими теплоизоляционными материалами.
  • К зданиям 5 категории вообще не предъявляется требование относительно предела огнестойкости.

Предел огнестойкости

Свойство материала комбинированной из нескольких материалов конструкции сопротивляться открытому пламени и высоким температурам без потери основных несущих способностей и функциональных характеристик называется пределом огнестойкости. Выражается в цифровом эквиваленте времени с буквенным шифром:

  • R — потеря строительной конструкцией несущей способности;
  • E — потеря целостности конструкции;
  • I — утрата материалом теплоизолирующей способности.

К примеру, предел огнестойкости ei 30 означает, что строительные конструкции будет сохранять свою целостность и защищать от воздействия высокой температуры на протяжении 30 мин.

Таблица 1: Предел огнестойкости строительных конструкций

Талица 2: Предел огнестойкости противопожарных преград, специальных строительных конструкций, используемых для локализации возгорания

Талица 3: Предел огнестойкости конструкций, заполняющих проемы (окна, двери, ворота) в противопожарных преградах

Способы увеличения предела огнестойкости стройматериалов

Существует целый ряд способов, способствующих увеличению времени сопротивления конструкций и материалов огню:

Обмазки и штукатурки. Один из наиболее распространенных и доступных способов. Может применяться для таких материалов, как дерево и древесно-стружечные изделия, железобетон, бетонные блоки, металл, полимерные стройматериалы. Может применяться как на несущих, так и ограждающих конструкциях. Эффективная толщина слоя защиты не менее 25мм. Хорошие показатели защиты продемонстрированы такие обмазки, как: известково-цементная штукатурка, вермикулит, перлит. Использование асбест-вермикулита является более эффективным методом, но допускается только в помещениях с ограниченной посещаемостью из-за вредного влияния асбеста.

Облицовка. Может осуществляться как специальными материалами вроде гипсовых плит или шамотного кирпича, так и обычным керамическим кирпичом. Эффективность защиты зависит от толщины изоляции. Глиняная плита толщиной до 80 мм повышает предел огнестойкости бетонной колонны до 4,8 ч. А облицовка такого же элемента обычным глиняным кирпичом — всего до 2 ч.

Защитные экраны. Чаще всего такими конструкциями в виде подвесных потолков с несгораемыми плитами закрываются панели перекрытия. Современные производители отделочных материалов выпускают довольно большое количество трудносгораемых листовых облицовок и сайдинга, который можно устанавливать на стены и колонны. Экраны могут различаться по своему защитному эффекту: теплоотводящие и поглощающие. Последние, как правило, защищают от лучистой энергии открытого пламени. Различается и конструктивное исполнение, бывают стационарные экраны и передвижные (временные).

Одной из разновидностей защитных экранов являются водяные завесы. Они создаются различными установками автоматического пожаротушения, как правило дренчерными. Их можно причислить к отдельному способу увеличения огнестойкости. Однако при стремительном распространении очага возгорания по большой площади такой способ малоэффективен. С недавнего времени существует решения, позволяющие более эффективно защищать металлические конструкции. Несущие колонны охлаждаются путём циркуляции воды во внутренних полостях изделия.

Химические средства защиты. Обычно антипиреновые составы в виде пропиток применяются для обработки древесины. Однако такой способ является довольно дорогостоящим и трудоемким. Кроме того его эффективность в значительной мере зависит от типа древесины — строения и плотности древесных волокон. В большинстве случаев приобретённые защитные свойства материала значительно ниже тех, которые рекламирует производитель антипиреновой грунтовки.

Защитные лакокрасочные материалы. Наносятся на поверхность строительной конструкции и пригодны для использования на любом стройматериале. Принцип действия большинства таких защит состоит в термореактивном эффекте. Под воздействием температуры краска вспучивается, создавая дополнительный слой теплоизоляции. Такие покрытия имеют сравнительно доступную стоимость, просты в предварительной подготовке основания и самой смеси. Легко наносятся на поверхности любой сложности. Имеют хорошие огнезащитные показатели и широкий спектр применения. Как правило, используются для повышения предела огнестойкости металлических конструкций.

Читайте также:  Маломобильные группы населения определение

Наиболее распространенными на данный момент являются следующие средства:

  • Германия — Пироморс, Унитерм;
  • Финляндия — Винтер;
  • Венгрия — Фламс САФЕ;
  • Россия — Файрекс;
  • Украина — ОВК — 2, Эндотерм – ХТ — 150.

Несмотря на высочайшую эффективность, таким материалы можно приготовить самостоятельно. Для этого необходимо смешать истолченный в порошок асбест и жидкое стекло в пропорциях 4 к 10 соответственно. Смесь тщательно перемешать. В зависимости от консистенции она может наноситься щеткой, валиком или при помощи краскопульта. Ориентировочный расход защитной смеси 0,5-1 кг/м 2 при слое 2-3 мм.

При использовании многокомпонентных защитных химических средств необходимо помнить, что в состав некоторых из них входят органические компоненты. При превышении температуры более 300°С такие средства разлагаются с выделением в атмосферу токсичных веществ. Предпочтительнее использовать вспучивающиеся покрытия на минеральной основе с жидким стеклом в виде вяжущего ВЗП-1 — ВЗП-12.

Прессование древесины. Сравнительно новый и дорогостоящий метод, который заключается во введении в толщу древесины специальных химических веществ, размягчающих целлюлозу. После этого осуществляется прессование под большим давлением. После этого материал приобретает значительную плотность и прочность, а также устойчивость к огню с повышением категории до трудносгораемых.

Особенности определения предела огнестойкости строительных конструкций

Перед определением огнестойкости сооружения необходимо осуществить расчет огнестойкости строительных конструкций, которые его составляют. При таком расчете необходимо учитывать определенные нюансы.

  1. Во-первых, слоистые ограждения значительно превосходит по своим теплоизоляционным характеристикам каждый отдельно взятый материал, из которых они изготовлены.
  2. Во-вторых, изделия, имеющие в своем составе воздушные прослойки, повышают свой уровень огнестойкости в среднем на 10% по сравнению с аналогичными изделиями, не имеющими такой прослойки.

В-третьих, при расчете необходимо учитывать направление теплового потока и соответствующим образом размещать защитные слои, вплоть до их несимметричного нанесения.

Огнестойкость строительных конструкций

Понятие огнестойкости

Строительные конструкции, выполненные из органических материалов, являются одним из компонентов горючей системы и способствуют возникновению и распространению пожара. Конструкции, выполненные из неорганических материалов, не горят, но аккумулируют значительную часть теплоты (до 50%), выделяющуюся при пожаре. При определённой дозе аккумулированной теплоты, прочность конструкций падает и происходит их обрушение. Так, металл, который может нести значительные нагрузки десятки лет, при достижении критических температур 470 – 500°С разрушается.

Под огнестойкостью строительных конструкций понимается их способность сохранять несущую и ограждающую способность. Показателем огнестойкости строительных конструкций является предел огнестойкости – время (в часах, минутах) от начала испытания (пожара) конструкции до возникновения одного из следующих признаков:

а) появление трещин;

б) повышения температуры на её необогреваемой поверхности в среднем на 140°С или в любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания или более 200°С независимо от температуры конструкции до испытания;

в) потери несущей способности.

Огнестойкость железобетонных конструкций

Основными факторами, влияющими на предел огнестойкости конструкций, являются влага, коэффициент теплопроводности и прочность арматуры.

Влага в бетоне играет двоякую роль. Во-первых, при действии на бетон высоких температур вода, испаряясь, замедляет темп прогрева, увеличивая тем самым предел огнестойкости. Во-вторых, вода способствует взрывообразному разрушению бетона при интенсивном прогреве вследствие образования пара. Необходимым условием взрыва бетона является быстрое повышение температуры, т.е. прогрев по стандартному температурному режиму или непосредственное воздействие огня на конструкцию.

При пожарах и испытаниях через 10 – 20 мин после воздействия огня на конструкцию бетон взрывообразно разрушается, откалываясь от обогреваемой поверхности пластинами площадью 200 см 2 и толщиной 0,5 – 1см. куски бетона отлетают на расстояние до 15м. Такое разрушение происходит по всей поверхности, приводя к быстрому уменьшению сечения конструкции и, как следствие, к потере несущей способности и огнезащитных свойств. При влажности бетона выше 5% и температуре 160 – 200°С, что способствует максимальному давлению пара в порах, бетон разрушается почти во всех случаях. При влажности 3,5 – 5% разрушение носит местный характер. При влажности менее 3% взрывы не наблюдаются. При нагревании по растянутому во времени режиму (с достижением стандартных температур через промежуток времени, увеличенный вдвое) бетон не взрывается, несмотря на его повышенную влажность (5 – 6%). При этом вид заполнителя бетона заметно не влияет на его разрушение.

Обычно взрывоопасное разрушение происходит на новостройках, в неотапливаемых подвалах и других влажных помещениях. Бетоны с плотностью, ниже 1250 кг/м 3 не взрываются при влажности 12 – 14%. Это обусловлено тем, что такие бетоны имеют сообщающиеся поры и благодаря паропроницаемости внутри конструкций не создаётся значительных внутренних усилий.

Повышение температуры окружающей среды при пожаре сопровождается переносом теплоты в материал конструкции. Её тепло стремится к тепловому равновесию. Поэтому температура внутренних точек будет изменяться не только в зависимости от координат и их взаимного расположения, но и от времени. Такие процессы теплопередачи принято называть нестационарными.

В настоящее время разработано много различных методов решения задач нестационарной теплопроводности, приводящих к удовлетворительным для инженерной практики результатам. Эти методы условно можно разделить на две группы – аналитические и численные.

Что понимается под огнестойкостью строительных конструкций?

Под огнестойкостью строительных конструкций понимается их способность сохранять в условиях пожара несущие или ограждающие функции и сопротивляться распространению огня.

Что такое предел огнестойкости строительной конструкции?

Предел огнестойкости строительной конструкции – это время в часах от начала пожара (огневого испытания) до появления признаков наступления пределов огнестойкости:

-потеря несущей способности, выражающаяся в обрушении конструкции и узлов или в появлении недопустимого для дальнейшей эксплуатации конструкции прогиба;

-потеря ограждающей способности, характеризующаяся повышением температуры на не обогреваемой стороне конструкции в среднем более чем на 160 о С, в любой точке этой поверхности более чем на 190 о С по сравнению с первоначальной температурой или более 220 о С независимо от первоначальной температуры конструкции;

-потеря плотности ограждающих конструкций и элементов, проявляющаяся в возникновении сквозных трещин, отверстий, через которые могут проникнуть в смежные помещения огонь или дым;

Читайте также:  Взрывоопасные объекты примеры

-достижение критической температуры материала конструкции – для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок.

Что такое степень огнестойкости? На сколько степеней огнестойкости подразделяются все здания и сооружения?

Способность здания в целом сопротивляться разрушению в условиях пожара характеризуется степенью огнестойкости. По огнестойкости все здания и сооружения подразделяются на восемь степеней огнестойкости: I, II, III, IIIa, IIIб, IV, IVa и V.

К конструкциям зданий I предъявляются самые жесткие требования по пределам огнестойкости. Самые минимальные требования предъявляются к зданиям V степени огнестойкости.

Что понимается под противопожарной преградой?

Под противопожарной преградой понимается любое конструктивное или объектно-планировочное решение, с помощью которого осуществляется препятствие распространению пожара в течение наперед заданного времени, регламентируемого нормативными требованиями или условиями безопасности.

Для чего предназначены противопожарные стены?

Противопожарные стены предназначены для разделения всего объема здания на пожарные отсеки. Они опираются на фундаменты или фундаментные балки, возводятся на всю высоту здания, пересекают все конструкции и этажи и должны сохранять свои функции при одностороннем обрушении примыкающих к ним конструкций.

Каков минимальный предел огнестойкости противопожарных стен?

Минимальный предел огнестойкости противопожарных стен должен быть не менее 2,5 ч.

Для чего применяют противопожарные перегородки?

Противопожарные перегородки применяют для ограждения взрыво – и пожароопасных технологических процессов в производственных зданиях, различных функциональных процессов и мест хранения материальных ценностей, представляющих определенную пожарную опасность; для успешной эвакуации людей и локализации пожаров в пределах отдельного помещения или пожарных секций.

Каков предел огнестойкости противопожарных перегородок?

Противопожарные перегородки выполняются из негорючих материалов двух типов. Перегородки первого типа должны иметь предел огнестойкости не менее 0,75 ч, второго типа – 0,25 ч.

Для чего предназначены противопожарные перекрытия?

Противопожарные перекрытия предназначены для ограничения распространения пожара по этажам здания.

Каков предел огнестойкости противопожарных перекрытий?

По пределу огнестойкости противопожарные перекрытия могут быть трех типов: 1-го типа с пределом огнестойкости не менее 2,5 ч; 2-го типа – не менее 1 ч; 3-го типа – не менее 0,75 ч. Их выполняют из негорючих материалов.

На сколько категорий подразделяются по взрывной и пожарной опасности производственные здания и помещения?

Производственные здания и помещения подразделяются по взрывной и пожарной опасности на 5 категорий (А, Б, В, Г, Д).

Дата добавления: 2015-09-15 ; просмотров: 1033 . Нарушение авторских прав

Степень огнестойкости здания ( сооружения, пожарного отсека )

Степень огнестойкости зданий, сооружений и пожарных отсеков – это классификационная характеристика объекта, определяемая показателями огнестойкости и пожарной опасности строительных конструкций. Степень огнестойкости здания нормируется с учетом функциональной пожарной опасности, этажности и площади пожарных отсеков здания, количества эвакуируемых с этажей людей.

В проектной документации на объекты капитального строительства и реконструкции указываются степень огнестойкости зданий, сооружений и пожарных отсеков, а также классы их функциональной и конструктивной пожарной опасности.

Степень огнестойкости является одним из критериев при классификации зданий, сооружений и пожарных отсеков.

Количество

Здания, сооружения и пожарные отсеки подразделяются на 5 степеней огнестойкости – I , II, III, IV и V со своими нормативными значениями пределов огнестойкости основных строительных конструкций, а именно:

  • несущих элементов (наружных и внутренних несущих стен, колонн, связей, диафрагм жесткости);
  • наружных ненесущих стен;
  • междуэтажных перекрытий (в т.ч. чердачных и над подвалами);
  • элементов бесчердачных покрытий (настилов, ферм, балок, прогонов);
  • внутренних стен лестничных клеток, маршей и площадок лестниц.

Различают фактическую и требуемую степени огнестойкости здания (сооружения).

Фактическая степень огнестойкости СОФ – это действительная степень огнестойкости запроектированного или построенного здания, определяемая по результатам пожарно-технической экспертизы строительных конструкций зданий и нормативным положениям. Пределы огнестойкости строительных конструкций для определения фактической степени огнестойкости здания приведены в таблице.

Под требуемой степенью огнестойкости здания СОтр подразумевается минимальная степень огнестойкости, которой должно обладать здание для удовлетворения требований пожарной безопасности. Требуемая степень огнестойкости зданий определяется специализированными или отраслевыми нормативными документами с учетом назначения зданий, этажности, площади, вместимости, категории производства по взрывопожарной опасности, наличия автоматических установок пожаротушения и других факторов.

Требуемые степени огнестойкости производственных, общественных и жилых зданий приведены в таблицах СП 2.13130.2012 «Системы противопожарной защиты: обеспечение огнестойкости объектов защиты».

Здание или сооружение удовлетворяет по огнестойкости требованиям пожарной безопасности, если:

Фактическая степень огнестойкости здания должна равняться требуемой или размещаться выше в таблице степени огнестойкости.

Для соблюдения приведенного условия безопасности строительные конструкции здания должны соответствовать нормативным требованиям по пределам огнестойкости и пределам распространения огня.

Как определяется

Степень огнестойкости зданий, сооружений и пожарных отсеков должна устанавливаться в зависимости от их этажности, класса функциональной пожарной опасности, площади пожарного отсека и пожарной опасности происходящих в них технологических процессов.

Пределы огнестойкости строительных конструкций должны соответствовать принятой степени огнестойкости зданий, сооружений и пожарных отсеков. Соответствие степени огнестойкости зданий, сооружений и пожарных отсеков и предела огнестойкости применяемых в них строительных конструкций приведено в таблице.

Здания I и II степени огнестойкости, как правило, здания с несущими и ограждающими конструкциями из бетона, железобетона, естественных или искусственных каменных материалов, с применением листовых и плитных негорючих материалов. Зданиям I степени огнестойкости соответствуют самые высокие нормативные значения пределов огнестойкости конструкций, для V степени огнестойкости зданий пределы огнестойкости конструкций не нормируются.

Таблица

Соответствие степени огнестойкости и предела огнестойкости строительных конструкций зданий, сооружений и пожарных отсеков

Степень огнестойкости зданий, сооружений и пожарных отсековПредел огнестойкости строительных конструкций
Несущие стены, колонны и другие несущие элементыНаружные ненесущие стеныПерекрытия междуэтажные (в том числе чердачные и над подвалами)Строительные конструкции бесчердачных покрытийСтроительные конструкции лестничных клеток
настилы (в том числе с утеплителем)фермы, балки, прогонывнутренние стенымарши и площадки лестниц
IR 120E 30REI 60RE 30R 30REI 120R 60
IIR 90E 15REI 45RE 15R 15REI 90R 60
IIIR 45E 15REI 45RE 15R 15REI 60R 45
IVR 15E 15REI 15RE 15R 15REI 45R 15
Vне нормируетсяне нормируетсяне нормируетсяне нормируетсяне нормируетсяне нормируетсяне нормируется

Примечание. Порядок отнесения строительных конструкций к несущим элементам здания и сооружения устанавливается нормативными документами по пожарной безопасности.

Оцените статью
Добавить комментарий