Что является носителем электрической энергии

Носители электрического тока

Электричество в наши дни принято определять как “электрические заряды и связанные с ними электромагнитные поля”. Само существование электрических зарядов обнаруживается через их силовое воздействие на другие заряды. Пространство вокруг всякого заряда обладает особыми свойствами: в нем действуют электрические силы, проявляющиеся при внесении в это пространство других зарядов. Такое пространство является силовым электрическим полем.

Пока заряды неподвижны, пространство между ними обладает свойствами электрического (электростатического) поля. Но когда заряды движутся, то вокруг них возникает также магнитное поле. Мы рассматриваем порознь свойства электрического и магнитного полей, но в действительности электрические процессы всегда связаны с существованием электромагнитного поля.

Мельчайшие электрические заряды входят как составные части в атом. Атом есть наименьшая часть химического элемента, являющаяся носителем его химических свойств. Атом является весьма сложной системой. Его масса в большей своей части сосредоточена в ядре. Вокруг последнего по определенным орбитам обращаются электрически заряженные элементарные частицы — электроны.

Силы тяготения удерживают на орбитах планеты, обращающиеся вокруг солнца, а электроны притягиваются к ядру атома электрическими силами. Из опыта известно, что взаимно притягиваются лишь разноименные заряды. Следовательно, заряды ядра атома и электронов должны быть различными по знаку. По историческим причинам принято считать заряд ядра положительным, а заряды электронов — отрицательными.

Многочисленные опыты показали, что электроны атомов любых элементов обладают одинаковым электрическим зарядом и одинаковой массой. Вместе с тем заряд электрона является элементарным, т. е. наименьшим возможным электрическим зарядом.

Принято различать электроны, находящиеся на внутренних орбитах атома и на внешних орбитах. Внутренние электроны относительно прочно удерживаются на своих орбитах внутриатомными силами. Но внешние электроны относительно легко могут отделяться от атома и оставаться некоторое время свободными или присоединяться к другому атому. Химические и электрические свойства атома определяются электронами его внешних орбит.

Величина положительного заряда ядра атома определяет принадлежность атома к определенному химическому элементу. Атом (или молекула) электрически нейтральны, пока сумма отрицательных зарядов электронов равна положительному заряду ядра. Но атом, потерявший один или несколько электронов, оказывается заряженным положительно вследствие избытка положительного заряда ядра. Он может перемещаться под действием электрических сил (притягиваться или отталкиваться). Такой атом является положительным ионом. Атом, захвативший излишние электроны, становится отрицательным ионом.

Носителем положительного заряда в ядре атома является протон. Это элементарная частица, служащая ядром атома водорода. Положительный заряд протона численно равен отрицательному заряду электрона, но масса протона в 1836 раз больше массы электрона. Ядра атомов, кроме протонов, содержат также нейтроны — частицы, не обладающие электрическим зарядом. Масса нейтрона в 1838 раз больше массы электрона.

Таким образом, из трех элементарных частиц, образующих атомы, электрическими зарядами обладают только электрон и протон. Но из них лишь заряженные отрицательно электроны могут легко перемещаться внутри вещества, а положительные заряды в обычных условиях могут перемещаться лишь в виде тяжелых ионов, т. е. перенося атомы вещества.

Упорядоченное движение электрических зарядов, т. е движение, имеющее преобладающее направление в пространстве, образует электрический ток. Частицами, движение которых создает электрический ток, — носителями тока в большинстве случаев являются электроны и значительно реже — ионы.

Допуская некоторую неточность, можно определять ток как направленное движение электрических зарядов. Носители тока могут более или менее свободно перемещаться в веществе.

Проводниками называются вещества, относительно хорошо проводящие ток. К числу проводников принадлежат все металлы, в особенности хорошими проводниками являются серебро, медь и алюминий.

Проводимость металлов объясняется тем, что в них часть внешних электронов отщепляется от атомов. Положительные опыты, образовавшиеся вследствие потери этих электронов, связаны в кристаллическую решетку — твердый (ионный) скелет, в промежутках которого находятся свободные электроны в форме своего рода электронного газа.

Малейшее внешнее электрическое поле создает в металле ток, т. е. вынуждает свободные электроны перемешаться в направлении действующих на них электрических сил. Для металлов характерно уменьшение проводимости с увеличением температуры.

Полупроводники проводят электрический ток значительно хуже, чем проводники. К числу полупроводников принадлежит очень большое число веществ, и свойства их весьма разнообразны. Характерным для полупроводников является электронная проводимость (т, е. ток в них создается, как и в металлах, направленным перемещением свободных электронов — не ионов) и, в отличие от металлов, увеличение проводимости при повышении температуры. Вообще для полупроводников характерна также сильная зависимость их проводимости от внешних воздействий — облучения, давления и т. п.

Диэлектрики (изоляторы) практически не проводят ток. Внешнее электрическое поле вызывает поляризацию атомов, молекул или ионов диэлектриков, т. е. смещение под действием внешнего поля упруго связанных зарядок, входящих в состав атома или молекулы диэлектрика. Количество свободных электронов в диэлектриках очень мало.

Нельзя указать жесткие границы между проводниками, полупроводниками и диэлектриками. В электротехнических устройствах проводники служат путем для перемещения электрических зарядов, а диэлектрики нужны, чтобы направить должным образом это движение.

Электрический ток создается вследствие воздействия на заряды сил неэлектростатического происхождения, называемых сторонними силами. Они создают в проводнике электрическое поле, которое вынуждает положительные заряды перемещаться по направлению действия сил поля, а отрицательные заряды — электроны — в противоположном направлении.

Полезно уточнить представление о поступательном движении электронов в металлах. Свободные электроны находятся в состоянии беспорядочного движения в пространстве между атомами, под обратном тепловому движению молекул. Тепловое состояние тела обусловливается столкновениями молекул друг с другом и столкновениями электронов с молекулами.

Электрон сталкивается с молекулами и меняет направление своего движения, но постепенно все же продвигается вперед, описывая очень сложную кривую. Длительное перемещение заряженных частиц в одном определенном направлении, налагающееся на их беспорядочное движение в разных направлениях, называется их дрейфом. Таким образом, электрический ток в металлах, по современным воззрениям, является дрейфом заряженных частиц.

11. Энергия электрического поля. Объемная плотность энергии

Рассмотрим процесс зарядки уединенного проводника. Чтобы его заряд достиг величины Q, будем сообщать проводнику заряд порциями dq, перенося их из бесконечно удаленной точки 1 на поверхность проводника в точку 2 (рис. 3.14). Для передачи проводнику новой порции заряда внешние силы должны совершить работу против сил электрическогополя : . Поскольку проводник уединенный (точка1 бесконечно далека от проводника), то . Потенциал точки2 равен потенциалу проводника . Поэтому . Если проводнику передан зарядq, то его потенциал . Полная работа внешних сил по зарядке проводника до значения зарядаQ будет равна

.

Согласно закону сохранения энергии, работа внешних сил по зарядке проводника увеличивает энергию создаваемого электростатического поля, т.е. проводник запасает определенную энергию:

. (3.13)

Рассмотрим процесс зарядки конденсатора от источника ЭДС. Источник в процессе зарядки переносит заряды с одной пластины на другую, причем сторонние силы источника совершают работу по увеличению энергии конденсатора:

,

где Q – заряд конденсатора после зарядки. Тогда энергия электрического поля, созданного конденсатором, определится как

. (3.14)

Выражение (3.14) позволяет записать величину энергии электростатического поля двумя способами:

Читайте также:  Имитация охранной сигнализации для квартиры

и .

Сопоставление двух соотношений позволяет задать вопрос: что является носителем электрической энергии? Заряды (первая формула) или поле (вторая формула)? Оба записанных равенства прекрасно согласуются с результатами экспериментов, т.е. расчет энергии поля можно одинаково правильно вести по обеим формулам. Однако такое наблюдается только в электростатике, т.е. когда осуществляется расчет энергии поля неподвижных зарядов. При рассмотрении теории электромагнитного поля в дальнейшем (гл. 8) мы увидим, что электрическое поле может создаваться не только неподвижными зарядами. Электростатическое поле – это частный случай электромагнитного поля, существующего в пространстве в виде электромагнитной волны. Его энергия распределена в пространстве с определенной плотностью. Введем понятие объемной плотности энергии поля следующим образом.

Преобразуем последнее равенство (3.14) для случая плоского конденсатора, воспользовавшись связью разности потенциалов и напряженности однородного поля:

,

где – объем конденсатора, т.е. объем части пространства, в котором создано электрическое поле.

Объемной плотностью энергии поля называется отношение энергии поля, заключенного в малом объеме пространства к этому объему:

. (3.15)

Следовательно, энергию однородного электрического поля можно рассчитать так: .

Сделанный вывод можно распространить на случай неоднородного поля таким образом:

, (3.16)

где– такой элементарный объем пространства, в пределах которого поле можно считать однородным.

Для примера рассчитаем энергию электрического поля, созданного уединенным металлическим шаром радиусом R, заряженным зарядом Q, и находящимся в среде с относительной диэлектрической проницаемостью . Повторив рассуждения примера из п.2.5, получим модуль напряженности поля в виде функции :

Тогда выражение для объемной плотности энергии поля примет вид:

Поскольку напряженность поля зависит только от радиальной координаты, то она будет практически постоянна в пределах тонкого сферического слоя с внутренним радиусом r и толщиной (рис. 3.15). Объем этого слоя. Тогда энергия поля определится так:

.

Аналогичный результат мы бы получили, если бы вычисляли энергию заряженного шара по формуле (3.13), воспользовавшись (3.6):

.

Однако следует помнить, что такой способ неприменим, если необходимо найти энергию электрического поля, заключенную не во всем объеме поля, а лишь в его части. Также метод расчета по формуле (3.13) нельзя использовать при определении энергии поля системы, для которой неприменимо понятие “емкость”.

Что такое электрический ток

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10 -31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1. Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Читайте также:  Что следует делать при радиационной аварии

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).
Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок. Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10 -9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ). Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются. Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться. Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Видео по теме: что такое электрический ток

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Читайте также:  Автономная охранная сигнализация для квартиры

Большая Энциклопедия Нефти и Газа

Носитель – электричество

Носители электричества при своем движении испытывают столкновения с другими частицами вещества и отдают последним всю энергию, полученную за счет электрического поля, или часть ее. Для поддержания движения носителей в проводниках должно существовать электрическое поле, которое при продвижении зарядов совершает работу. Вследствие этого всякий проводник обладает сопротивлением электрическому току. [1]

Носители электричества при своем движении испытывают столкновения с другими частицами вещества и отдают последним всю энергию, полученную за счет электрического поля или часть ее. Для поддержания движения носителей в проводниках должно существовать электрическое поле, которое при продвижении зарядов совершает работу. Вследствие этого всякий проводник обладает сопротивлением электрическому току. [2]

Носителями электричества в электролитах являются положительно заряженные ионы ( катионы) и отрицательно заряженные ионы ( анионы), возникающие в результате диссоциации нейтральных молекул растворенного вещества под воздействием молекул растворителя. [4]

Носителем электричества являются не какие-то электрические жидкости, а сами частицы материи, утверждал Фарадей. [5]

Наименьшим носителем электричества является электрон. [6]

Диффузия носителей электричества из газоразрядного столба происходит под влиянием градиента их концентрации. [7]

Отличительными особенностями поведения носителей электричества в полупроводниках является их способность к диффузии и рекомбинации. [8]

В растворах солей носителями электричества являются ионы. [9]

В металлических проводниках носителями электричества являются электроны проводимости – слабо связанные с ионами металла свободные электроны. В электролитах ток создается движением носителей электричества – положительных и отрицательных ионов, образующихся в результате диссоциации ( разделения) молекул растворенного вещества. В газах носителями электричества являются как электроны, так и положительные, а иногда и отрицательные ионы, образующиеся вследствие ионизации газа. Прохождение электрического тока в металлических проводниках и газах обычно не связано с переносом вещества, в электролитах сопровождается переносом вещества – электролизом. [10]

В металлических проводниках носителями электричества являются электроны проводимости – слабо связанные с ионами металла свободные электроны. В электролитах ток создается движением носителей электричества, обладающих зарядами обоих знаков – положительных и отрицательных ионов, образующихся в результате диссоциации ( разделения) молекул растворенного вещества В газах носителями электричества являются как электроны, так и положи -, тельные, а иногда и отрицательные ионы, образующиеся вследствие ионизации газа. Прохождение электрического тока в металлических проводниках и газах обычно не связано с переносом вещества; а ток в электролитах сопровождается переносом вещества – электролизом. [11]

В рассмотренных нами приборах носителями электричества являются электроны и поэтому такие приборы называются электронными. Но существует обширная группа приборов, в которых носителями электричества являются не только электроны, но и заряженные частицы газа – ионы. Такие приборы называются ионными, или газоразрядными. Йодные приборы наполняют газом – парами ртути или инертными газами ( неоном, аргоном, ксеноном, криптоном) при пониженном давлении. [12]

В рассмотренных выше электронных приборах носителями электричества являются электроны, перемещающиеся в практически свободном от газа междуэлектродном пространстве. В ионных приборах, в отличие от электронных, разряд между электродами прибора происходит в газовой среде и основными носителями зарядов, кроме электронов, являются образующиеся в процессе разряда положительные ионы. Ионный ток невелик; он составляет на отдельных участках разрядного промежутка от долей процента до нескольких процентов всего тока. Главное влияние ионов на рабочий процесс сказывается в компенсации ими пространственного отрицательного заряда электронов. Вследствие этого ионные приборы способны пропускать большие токи при малых падениях напряжения между электродами. Кроме того, ионы могут оказывать существенное влияние на электронную эмиссию катода, а в некоторых видах приборов – полностью определять ее. [13]

Для отключения тиристора необходимо снизить концентрацию носителей электричества , вызванную прямым током, до такой степени, чтобы исключить механизм обратной связи в системе переходов. Принципиально тиристоры можно отключать отрицательным управляющим током, но это возможно лишь при анодном токе. При больших токах для отключения тиристора их необходимо снизить до значения меньше удерживающего тока. Для этого тиристор переключается из проводящего в обратное запертое состояние. Поэтому процесс отключения тиристора складывается из периода переключения из прямого в обратное состояние и из периода перехода из обратного в прямое запертое состояние. Продолжительность первого периода обычно составляет единицы и десятые доли микросекунд. [15]

носители энергии

Универсальный русско-немецкий словарь . Академик.ру . 2011 .

Смотреть что такое “носители энергии” в других словарях:

Носители заряда — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока. Примерами подвижных частиц являются электроны, ионы. Примером квазичастицы носителя заряда является дырка.… … Википедия

ПИТАНИЕ — ПИТАНИЕ. Содержание: I. Питание как соц. гигиеничес ая проблема. Про яема П. в свете исторического разв и тин человеческого общества . . . 38 Проблема П. в капиталистическом обществе 42 Производство продуктов П. в царской России и в СССР … Большая медицинская энциклопедия

ИМЯСЛАВИЕ — движение почитателей имени Божия, начавшееся в рус. мон рях Афона в 1909 1913 гг. и нашедшее сторонников в России. Связанная с И. полемика нашла выражение в трудах рус. богословов и философов XX в. Имяславские споры «Афонская смута» 1909 1913 гг … Православная энциклопедия

Обмен веществ и сил в животном организме — Между телом животного и его внешней средой происходит постоянный обмен веществ пища, питье и кислород вдыхаемого воздуха, войдя в тело, претерпевают здесь ряд превращений, преимущественно химических, и извергаются вон (легкими, кожей, почками и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Световая фаза — Световая фаза этап фотосинтеза, в течение которого за счёт энергии света образуются богатые энергией соединения АТФ и молекулы носители энергии. Осуществляется в хлоропластах, в которых на мембранах располагаются молекулы хлорофилла.… … Википедия

Беспламенное взрывание — (a. non flame blasting; н. flammenloses Schieben, flammenloses Sprengen; ф. explosion sans flamme; и. voladura sin llama) способ взрывания без образования пламени. Носители энергии газы, сжатые до высокого давления (способ эрдокс), жидкие … Геологическая энциклопедия

Взрывание беспламенное — способ взрывания без образования пламени. Носители энергии газы, сжатые до высокого давления, жидкие или твердые вещества, способные к быстрому расширению или испарению с образованием большого количества газов. Применяется в шахтах, опасных по… … Российская энциклопедия по охране труда

Полупроводники — широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… … Большая советская энциклопедия

ПОЛУПРОВОДНИКИ — широкий класс в в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106 104 Ом 1 см 1 и хороших диэлектриков s=10 10 10 12 Ом 1см 1 (электропроводность указана при комнатной темп ре).… … Физическая энциклопедия

ЦИКЛОТРОННЫЙ РЕЗОНАНС — избирательное поглощение или отражение электромагн. волн проводниками, помещёнными в постоянное магн. поле, на частотах, равных или кратных циклотронной частоте носителей заряда. В пост. магн. поле Н заряженные ч цы движутся по спиралям, оси… … Физическая энциклопедия

ДЕТЕКТОРЫ ЧАСТИЦ — приборы для регистрации атомных и субатомных частиц. Чтобы частица была зарегистрирована, она должна взаимодействовать с материалом детектора. Простейшие детекторы ( счетчики ) регистрируют только сам факт попадания частицы в детектор; более… … Энциклопедия Кольера

Оцените статью
Добавить комментарий