Определение и значение электротехники

Определение и значение электротехники

Электротехника имеет множество разделов, самые важные из которых описаны ниже. Хотя инженеры работают каждый в своей области, но многие из них имеют дело с комбинацией из нескольких наук.

Электроэнергетика

Электроэнергетика — наука о выработке, передаче и потреблении электроэнергии, а также о разработке устройств для этих целей. К таким устройствам относят: трансформаторы, электрические генераторы, ТЭНы, электродвигатели, низковольтную аппаратуру и электронику для управления силовыми приводами. Многие государства мира имеют электрическую сеть, называемую электроэнергетической системой, которая соединяет множество генераторов с потребителями энергии. Потребители получают энергию из сети, не тратя ресурсы на выработку своей собственной энергии. Энергетики работают как над проектированием и обслуживанием сети, так и над энергетическими системами, присоединёнными к сети. Такие системы называются внутрисетевыми и могут как поставлять энергию в сеть, так и потреблять её. Энергетики работают также и над системами не присоединёнными к сети, называемыми внесетевыми, которые в некоторых случаях являются более предпочтительными, чем внутрисетевые системы. Имеется перспектива создания энергетических систем, контролируемых со спутника, имеющих обратную связь в реальном времени, что позволит избежать скачков напряжения и предотвратить нарушения энергоснабжения.

Системы автоматического управления

Задачами автоматических систем управления (и автоматизации в целом) является моделирование различных динамических систем и разработка систем управления, которые заставляют работать динамические системы нужным образом. Для создания таких устройств могут использоваться электрические схемы, процессоры цифровой обработки сигналов, микроконтроллеры и программируемые логические контроллеры. Системы управления имеют широкую область применения от систем, встраиваемых в энергетические установки (например, на коммерческих авиалайнерах), автоматов постоянной скорости (имеющихся во множестве современных автомобилей) и ЧПУ в станках до систем управления на базе промышленных ПК в автоматизации промышленного производства.

Инженеры часто используют обратную связь при проектировании систем управления. Например в автомобиле с автоматом постоянной скорости скорость транспортного средства постоянно отслеживается и данные передаются системе, которая соответственно регулирует выходную мощность двигателя. Если имеется стандартная система обратной связи, можно использовать теорию управления для определения того, как система должна реагировать на поступающую информацию.

Микроэлектроника

Микроэлектроника занимается разработкой и изготовлением очень малых компонентов электронных цепей для использования в интегральных схемах или, в некоторых случаях, для использования в качестве основных электронных компонентов. Самыми распространенными микроэлектронными компонентами являются полупроводниковые транзисторы, хотя все основные электронные компоненты (резисторы, конденсаторы, индукторы) могут быть созданы на микроскопическом уровне.

Микроэлектронные компоненты создаются химическим изготовлением пластин из полупроводников, например, кремния (при более высоких частотах — полупроводниковых соединений, таких как арсенид галлия, фосфид индия, нитрид галлия), чтобы получить желаемую передачу заряда и управлять током. Микроэлектроника затрагивает существенную часть химии и материаловедения, и требует от инженера-электроника, работающего в данной области, хороших практических знаний квантовой механики.

Общая электротехника и электроника. Основные определения

1.1. Основные пояснения и термины

Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники и электроники.

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии , т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электрические механизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I .

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i .

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.
Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными – электрические цепи, не содержащие источников энергии.

Для облегчения анализа электрическую цепь заменяют схемой замещения.

На рисунке 1.2 показана схема замещения.

1.2. Пассивные элементы схемы замещения

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.
В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

(1.1)

где l – длина проводника;
S – сечение;
ρ – удельное сопротивление.

Сопротивление измеряется в омах (Ом), а проводимость – в сименсах (См).

Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P – потребляемая мощность;
I – ток.
Сопротивление в схеме замещения изображается следующим образом:

Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

где W – число витков катушки;
Ф – магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения.

Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:

где q – заряд на обкладках конденсатора;
Uс – напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Активные элементы схемы замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС – это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R.
Ri – внутреннее сопротивление источника ЭДС.
Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U 12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

Ток

(1.2)

(1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U 12 = E.
Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.
Возможен другой путь идеализации источника: представление его в виде источника тока.
Источником тока называется источник энергии, характеризующийся практически постоянной величиной тока и низкой внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю, а сопротивление – бесконечности.

Поделим левую и правую части уравнения (1.2) на Ri и получим

,

где – ток источника тока;

– внутренняя проводимость.

У идеального источника тока g i = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

Читайте также:  Как устроен датчик движения

1.4.Основные определения, относящиеся к схемам

Различают разветвленные и неразветвленные схемы.
На рис. 1.5 изображена неразветвленная схема.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема – это сложная комбинация соединений пассивных и активных элементов.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Узел, в котором сходятся две ветви, называется устранимым, то есть топологически это не узел. Топологическим, настоящим или неустранимым узлом является такой, в котором соединены три и большее число ветвей. Узел в схеме обозначается точкой.

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.
Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром .

1.5. Режимы работы электрических цепей

В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим.
При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений.
Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки. Режим холостого хода является аварийным для источников тока.
Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным для источников напряжения.
Согласованный режим – это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

1.6. Основные законы электрических цепей

На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления. Это закон Ома .

Основными законами электрических цепей, наряду с законом Ома, являются закон баланса токов в узлах (первый закон Кирхгофа) и закон баланса напряжений на замкнутых участках (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.

Токам, направленным к узлу, присвоим знак “плюс”, а токам, направленным от узла – знак “минус”. Получим следующее уравнение:

или

Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.

Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком “плюс”, если направления их совпадают с направлением обхода контура, и со знаком “минус”, если не совпадают.
При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.

Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).

Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.

Из этого уравнения выведем формулу для тока

,

где Σ R – сумма сопротивлений ветви;
Σ E – алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком “плюс”, если направление ее совпадает с направлением тока и со знаком “минус”, если не совпадает.

Учебные материалы

Электрический ток

Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите — ионы. Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-). Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному.

Электрическое напряжение

Электрическое напряжение (U) это характеристика работы сил поля по переносу электрических зарядов через внешние элементы цепи. При этом электрическая энергия преобразуется в другие виды. Единица измерения – вольт (В). За положительное направление напряжения приемника принимают направление, совпадающее с выбранным положительным направлением тока. В электрических цепях и энергетических системах напряжение может иметь значения в пределах от нескольких вольт до сотен тысяч вольт.

Электродвижущая сила

Электродвижущая сила Е (ЭДС) характеризует способность индуцированного поля вызывать электрический ток. Единица измерения – вольт (В). Источники энергии могут быть источниками ЭДС и тока. В данном пособии рассматриваются только источники ЭДС. Источник ЭДС характеризуется двумя параметрами: значениями ЭДС (Е) и внутреннего сопротивления (r). Источник ЭДС, внутренним сопротивлением которого можно пренебречь, называют идеальным источником. Реальный источник ЭДС имеет определенное значение внутреннего сопротивления. У источника ЭДС внутренне сопротивление значительно меньше сопротивления нагрузки (RН) и электрический ток в цепи зависит главным образом от величины ЭДС и сопротивления нагрузки. Источник ЭДС имеет следующие графические обозначения.

Вольтамперная характеристика источника ЭДС имеет вид:

Зависимость между напряжением на зажимах источника и его ЭДС имеет вид:

U = E — r × I (для реального источника ЭДС)

U = E (для идеального источника).

Электрическое сопротивление R это величина, характеризующая противодействие проводящей среды движению свободных электрических зарядов (току). Единица измерения – Ом. Величина, обратная сопротивлению, называется электрической проводимостью G. Единица измерения – сименс (См).

Электрическое сопротивление

Электрическое сопротивление проводника определяется по формуле

где l – длина;
S – поперечное сечение;
ρ — удельное сопротивление.

По способности проводить электрический ток электротехнические материалы можно разделить на группы: проводники, диэлектрики и полупроводники.

Проводниковые материалы

Проводниковые материалы (алюминий, медь, золото, серебро и др.) обладают высокой электропроводностью. Наиболее часто в проводах и кабелях используется алюминий, как наиболее дешевый. Медь имеет большую электропроводимость, но она дороже.

Из проводников следует выделить группу материалов с большим удельным сопротивлением. К ним относятся сплавы ( нихром, фехраль и др.) они используются для изготовления обмоток нагревательных приборов и реостатов. Вольфрам используется в лампах накаливания. Константан и манганин используются в качестве сопротивлений в образцовых приборах.

Электроизоляционные материалы (диэлектрики)

Электроизоляционные материалы (диэлектрики) имеют очень малую удельную электрическую проводимость. Они бывают газообразные, жидкие и твердые. Особенно большим разнообразием отличаются твердые диэлектрики. К ним относятся резина, сухое дерево, керамические материалы, пластмассы, картон, пряжа и др. материалы. В качестве конструкционных материалов применяются текстолит и гетинакс. Текстолит это диэлектрический материал основой которого является ткань, пропитанная феноло-формальдегидной смолой. Гетинакс это бумага, пропитанная феноло-формальдегидной смолой.

Полупроводники

Полупроводники по электропроводимости занимают промежуточное положение между проводниками и диэлектриками. Простые полупроводниковые вещества – германий, кремний, селен, сложные полупроводниковые материалы — арсенид галлия, фосфид галлия и др. В чистых полупроводниках концентрация носителей заряда – свободных электронов и дырок мала и эти материалы не проводят электрический ток.

Если в полупроводниковый материал ввести примесь (донорную или акцепторную), то есть произвести легирование, то полупроводник становится обладателем или электронной (n) проводимости (избыток электронов), или дырочной (р) проводимости (избыток положительных зарядов – дырок). Если соединить два полупроводника с различными видами проводимости, получим полупроводниковый прибор (диод), который используется для выпрямления переменного тока.

Мощность в электрической цепи характеризует интенсивность преобразования энергии из одного вида в другой в единицу времени. Единица измерения мощности – Ватт (Вт).

Для цепи постоянного тока мощность источника

Читайте также:  Виды пожарно тактических учений

Рпр = U × I = R × I 2 = U 2 /R

Закон электромагнитной индукции

Закон электромагнитной индукции — устанавливает связь между электрическими и магнитными явлениями, был открыт в 1831 году М. Фарадеем, в 1873 году закон был обобщен и развит Д.Максвеллом:

Если магнитный поток Ф, проходящий сквозь поверхность, ограниченную некоторым контуром, изменяется во времени t, в контуре индуцируется ЭДС e, равная скорости изменения потока

Основные понятия, определения и законы электротехники

Составил И.А.Заселяев

КОНСПЕКТ ЛЕКЦИЙ

ПО КУРСУ «ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА»

для студентов строительных специальностей

Электротехника – это область науки и техники, изучающая теорию и практическое применение электричества. Электроника – это наука, в которой изучаются процессы, происходящие с заряженными частицами.

Электрическая цепь – это совокупность элементов, через которые замыкается электрический ток.

Простейшую электрическую цепь можно представить в виде источника, потребителя и линии, соединяющей источник и потребитель электрического тока.

Рис.1. Простейшая цепь электрического тока

Все сложные электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы:

– источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы);
– приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электронагреватели и т.д.);
– проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и др.)

Все электрические цепи делятся на линейные и нелинейные. Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным.

Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Электрическим током I называют направленное движение зарядов, возникающее в замкнутой цепи под действием электродвижущей силы (ЭДС) Е источника (генератора).

Электрические заряды создаются смещением электронов. Когда имеет место избыток электронов в одной точке и дефицит электронов в другой, между этими точками существует разность потенциалов. При наличии проводника между точками возникает поток электронов, называемый током. За положительное направление тока принято считать направление противоположное направлению потока (дрейфа) электронов и совпадающее с направлением положительных зарядов – дырок (см. раздел Основы электроники).

Если величина электрического тока во времени не меняется, то ее можно определить как количество электрических зарядов q, проходящих через проводник в единицу времени t , т. е.:

I =q/t ,

(1 ампер = 1 кулон/сек; кулон ≈6,28 ∙10 18 электронов). Электрический ток, направление и величина которого неизменны, называют постоянным током и он может быть обозначен прописной буквой I. Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменноготока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i, мгновенное значение тока i=dq/ dt.

При перемещении положительного заряда из одной точки поля в другую, электрическое поле совершает работу. Отношение этой работы А к значению заряда q называется напряжением межу этими точками:

U=A/q .

Единица измерения напряжения – Вольт [В]. Можно вывести понятие напряжения и из количественной характеристики электрического поля – потенциала j. Напряжением между двумя точками электрического поля называется разность потенциалов в этих точках (j1 и j2): .

Электрическая схема – это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 2 изображена электрическая схема цепи, состоящей из источника энергии – активного элемента и пассивных элементов: электроламп 1 и 2, электродвигателя 3.


Рис. 2

Для облегчения анализа электрическую цепь заменяют схемой замещения.

Схема замещения – это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 3 показана схема замещения рис. 2.


Рис. 3

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10992 – | 7440 – или читать все.

134.249.83.1 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

1. Основные понятия и определения электротехники. Топологические параметры.

Электротехника – это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии.

Электроника – это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребленияинформации.

Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами.

Магнитное поле – это одна из форм электромагнитного поля. Оно создается движущимися электрическими зарядами и спиновыми магнитными моментами (момент количества движения микрочастиц) атомных носителей магнетизма. Взаимосвязь магнитного и электрического полей описывает уравнение Максвелла.

Электрическое поле – это частная форма проявления электромагнитного поля. Оно создаётся электрическими зарядами или переменным магнитным полем.

Магнитная цепь – это совокупность источников магнитного потока (постоянных магнитов, электромагнитов) и ферромагнитных или других тел и сред, через которые магнитный поток замыкается.

Электрический ток – это направленное движение электрических зарядов в веществе или вакууме под воздействием электрического поля. Ток характеризуется силой, измеряемой в амперах (А). Для установившихся режимов различают два вида токов: постоянный и переменный. Постоянным называют ток, который может изменяться по величине, но не меняется по знаку сколь угодно долгое время. Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Переменные токи подразделяются на синусоидальные и несинусоидальные.

Гармонические колебания характеризуются изменением колеблющейся величины во времени по синусоидальному закону. По синусоидальному закону изменяется напряжение, ЭДС, магнитный поток. Синусоидально изменяющиеся величины изображают синусоидами, показывающими мгновенные их значения в любой момент времени, или вращающимися векторами.

Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой / и измеряется в герцах (Гц). В России (как и во многих странах мира) частота тока в электрической сети 50 Гц соответствует 50 полным колебаниям (периодам) в секунду.

Электродвижущая сила (ЭДС) – это сила, способная совершать работу по перемещению в электрической цепи электрических зарядов. ЭДС измеряется в вольтах (В) и обозначается латинской буквой Е.

Электрическое напряжение (U) – это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи. Напряжение, как и ЭДС, измеряется в вольтах (В). Если источник ЭДС подключить к замкнутой цепи, то она окажется под воздействием электромагнитного поля, а на её участках установятся разности электрических потенциалов или напряжения.

Электрической цепью называется, в общем виде, совокупность определенным образом соединенных источников, преобразователей и потребителей электрической энергии, через которые может протекать электрический ток.

Электрическое сопротивление – это способность элемента электрической цепи противодействовать в той или иной степени прохождению по нему электрического тока. Сопротивление, в общем случае, зависит от материала элемента, его размеров, температуры, частоты тока и измеряется в омах (Ом). Различают активное (омическое), реактивное и полное сопротивления. Они обозначаются чаще всего соответственно: R, X, Z.

Активное сопротивление элемента – это сопротивление постоянному току.

Индуктивное сопротивление – это сопротивление элемента, связанное с созданием вокруг него переменного или изменяющегося магнитного поля. Оно зависит от конфигурации и размеров элемента, его магнитных свойств и частоты тока. Индуктивность можно определить как меру магнитной инерции элемента в отношении электромагнитного поля. По смыслу индуктивность в электротехнике можно уподобить массе в механике. Например, чем больше индуктивность элемента, тем медленнее и тем большую энергию магнитного поля он запасает. Индуктивностью обладают в разной мере все элементы электрической цепи переменного тока: провода, шины, кабели и т.п., но в большей степени обмотки электрических машин и разного рода многовитковые катушки.

Читайте также:  Определение пожароопасной категории помещения

Ёмкостное сопротивление – это сопротивление элемента, связанное с созданием внутри и вокруг него электрического поля. Оно зависит от материала элемента, его размеров, конфигурации и частоты тока.

Фаза (от греч. – появление) – в теории колебаний и волн переменного тока определяет состояние колебательного процесса в каждый момент времени.

Однофазная цепь – это электрическая цепь переменного тока, в которой действует одно синусоидальное напряжение.

Трёхфазная цепь – это электрическая цепь переменного тока, в которой действуют три синусоидальных напряжения сдвинутых по фазе обычно на 120°. Трёхфазные цепи экономичнее однофазных, дают существенно меньшие пульсации тока после выпрямления в постоянный ток, позволяют простыми средствами получать вращающееся магнитное поле в электродвигателях.

Фазное напряжение источника (приёмника, сети) электрического тока – это разность потенциалов между выводом фазы и нейтральной точкой (проводом).

Линейное напряжение источника (приёмника, сети) электрического тока – это разность потенциалов между выводами смежных фаз.

Электромагнитная индукция есть возникновение ЭДС в проводнике, движущемся в магнитном поле или в замкнутом проводящем контуре вследствие движения контура в магнитном поле или в результате изменения самого поля.

Взаимная индукция – это явление возбуждения ЭДС в одной электрической цепи при изменении электрического тока в другой цепи или при изменении взаиморасположения этих двух цепей. Самоиндукция – наведение ЭДС в электрической цепи при изменении протекающего в ней электрического тока.

Магнитодвижущая сила (МДС) – ранее часто называлась намагничивающей силой – это величина, характеризующая магнитное действие электрического тока. МДС вводится при расчётах магнитных цепей по аналогии с ЭДС в электрических цепях.

Электрическая энергия – это способность электромагнитного поля производить работу, преобразовываясь в другие виды энергии (механическую, тепловую, световую, химическую и др.).

Электрическая мощность – это работа по перемещению электрических зарядов в единицу времени. Единица измерения мощности -ватт (Вт), киловатт (кВт), мегаватт (МВт). Различают активную и реактивную мощности.

Активная мощность (Р) – это мощность, связанная с преобразованием электроэнергии в тепловую или механическую энергию.

Диэлектрики – это вещества практически не проводящие электрический ток. Диэлектрики бывают твёрдые, жидкие и газообразные. Важнейшими характеристиками диэлектриков являются: диэлектрическая восприимчивость, диэлектрическая проницаемость и электрическая прочность.

Диэлектрические потери есть мощность, выделяющаяся в диэлектрике при воздействии на него переменного электрического поля. Потери мощности в диэлектриках, работающих в переменном поле, оцениваются тангенсом угла диэлектрических потерь.

Конденсатор электрический – это электрическая ёмкость, представляющая собой устройство из двух или более электродов (обкладок), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Электрическая изоляция – это устройство, выполненное из диэлектрических материалов и предназначенное для изоляции частей электрооборудования, находящихся под разными электрическими потенциалами с целью предотвращения коротких замыканий на землю, на корпус машин, на сооружения и конструкции. Наиболее распространенные материалы: фарфор, слюда, бумага, минеральное масло, эпоксидные смолы, стекло и другие.

Изоляторы – из фарфора и стекла – одни из основных элементов для изоляции электроустановок и наиболее широко распространены. По своему назначению изоляторы подразделяются на опорные, проходные и линейные с нормированными соответствующими стандартами электрическими и механическими нагрузками. Опорные изоляторы предназначены для крепления и изоляции токоведущих частей. Проходные изоляторы служат для изоляции и соединения токоведущих частей, находящихся в закрытых помещениях, баках трансформаторов с открытыми токоведущими частями электроустановок и ЛЭП. Линейные изоляторы служат для изоляции и крепления проводов и грозозащитных тросов воздушных ЛЭП и подстанций.

Изоляционное масло – это минеральное масло повышенной степени очистки, обладающее диэлектрическими свойствами.

Пробивное напряжение – это напряжение, при котором происходит пробой (разрушение), т.е. наступает предел электрической прочности диэлектрика, а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика.

Электролиты – это растворимые химические вещества, в которых прохождение постоянного электрического тока осуществляется в результате движения ионов и сопровождается электролизом – распадом. Положительно заряженные ионы (катионы) движутся к катоду, отрицательно заряженные ионы (анионы) движутся к аноду.

Короткое замыкание (КЗ) – это образование электрического контакта вследствие соединения проводников электрической цепи, не предусмотренного нормальными условиями работы. Это явление в электрической части ГЭС относится к числу самых опасных случаев.

В сети переменного тока КЗ может быть между фазами (2-х и 3-х -фазное) или вследствие замыкания фазы на землю (однофазное). В сети постоянного тока КЗ бывает между полюсами или полюсом и землёй. КЗ возникает из-за нарушения изоляции частей электрической установки и обычно сопровождается значительным увеличением силы тока в цепи, что создаёт опасность повреждения оборудования. У потребителей электроэнергии в момент КЗ резко снижается электрическое напряжение. Для предотвращения опасных последствий КЗ применяют релейную защиту или устанавливают плавкие предохранители, которые обеспечивают быстрое отключение участка с КЗ.

Релейная зашита – это комплекс электрических устройств, содержащих релейные элементы (реле), способные выявлять скачкообразное изменение контролируемых параметров (тока, напряжения, частоты тока, мощности и др.), и при достижении их недопустимых значений выдавать командные импульсы на отключение поврежденных участков электроустановки или на остановку агрегатов, машин, механизмов.

Переходный процесс в электрических установках представляет собой переход от одного устачовившегося состояния к другому установившемуся состоянию в результате планового включения или отключения генераторов, а также при возникновении КЗ либо при внезапных изменениях нагрузки (мощности).

Электрическая машина – это электромеханическое устройство, осуществляющее взаимное преобразование механической и электрической энергии (электрогенератор и электродвигатель).

Электрической цепью называют совокупность тел и сред, образующих замкнутые пути для протекания электрического тока.

Обычно физические объекты и среду, в которой протекает электрический ток, упрощают до условных элементов и связей между ними. Тогда определение цепи можно сформулировать как совокупность различных элементов, объединенных друг с другом соединениями или связями, по которым может протекать электрический ток.

Элементами электрической цепи являются источники электрической энергии, активные и реактивные сопротивления.

Связи в электрической цепи изображаются линиями и по смыслу соответствуют идеальным проводникам с нулевым сопротивлением.

Связи цепи, наряду с элементами, определяют ее свойства и для одних и тех же элементов можно создать множество различных электрических цепей различающихся только связями.

Связи элементов электрической цепи обладают топологическими свойствами, т.е. они не изменяются при любых преобразованиях, производимых без разрыва связей. Пример такого преобразования показан на рис. 1.

Возможность взаимно однозначного преобразования электрической цепи позволяет использовать его до начала анализа для приведения схемы к наиболее простому и легко воспринимаемому виду. Так схема на рис. 1 б) выглядит значительно проще, чем схема а).

Для описания топологических свойств электрической цепи используются топологические понятия, основными из которых являются узел, ветвь и контур.

Узлом электрической цепи называют место (точку) соединения трех и более элементов.

Графически такое соединение может изображаться различными способами.

Обратите внимание на точку в месте пересечения линий схемы. Если она отсутствует, то это означает отсутствие соединения. Точка может не ставиться там, где при пересечении линия заканчивается (рисунок а)).

Узел не обязательно имеет вид точки. На рис. 1 б) вся нижняя линия связи, соединяющая R2, E, R5 и R3 , является узлом, а на рис. 1 а) этот же узел представлен диагональной связью.

Ветвью называют совокупность связанных элементов электрической цепи между двумя узлами.

Ветвь по определению содержит элементы, поэтому вертикальные связи рис. 2 а) и б) ветвями не являются. Не является ветвью и диагональная связь рис. 1 а).

Контуром (замкнутым контуром) называют совокупность ветвей, образующих путь, при перемещении вдоль которого мы можем вернуться в исходную точку, не проходя более одного раза по каждой ветви и по каждому узлу.

По определению различные контуры электрической цепи должны отличаться друг от друга по крайней мере одной ветвью.

Количество контуров, которые могут быть образованы для данной электрической цепи ограничено и определено.

Оцените статью
Добавить комментарий